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Motivation

m Short-precision oriented applications
— Qver of the operations are less than 16 bits

+4
About 50% of the aasassasssss sl tlls TYTTTITIL A

operations are less than

16-bit

|
. ”,,.,

Bit Width

Bitwidths for SPECint95 on 64-bit Alpha.

Brooks, D. and Martonosi, M.,”"Dynamically exploiting narrow width operands to
Improve processor power and performance,” Proc. of Intl. Symposium on Fifth

High-Performance Computer Architecture, pp. 13-22, 1999.
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Related work

s Dynamic explore data bit width

m Static compiler analysis
— ARM7/ARMO cores:

— 32-bit RISC+CISC instruction set
— 16-bit RISC
— 32-bit data

s What if the major data types in your SoC are 8 or 16
bits?

— 32-bit data path may be an overkiller
— bad for performance, power, chip size, etc.

6/22



Memory bandwidth bottleneck

s ARM7/ARMO9 cores perform well
— Memory bandwidth : 32/64

s What if your SoC can not afford such bandwidth
— In cost-sensitive applications
— 16-bit bus: 2 cycles/per instruction (or data) fetch
— 8-bit bus: 4 cycles/per instruction (or data) fetch
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Proposed solution

m A 16-bit Thumb Microprocessor — SYS16TM
— 16-bit instruction set: same as THUMB
— 16-bit data path
— An extra low cost ARM-based solution

— Compatible with most ARM’s existing development
tools

m Architecture challenges
1. Register file bank merging
2. Pipeline Trimming
3. Reuse ARM'’s develop environment
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Register file bank merging

System &
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Architecture Changes

m Fetch stage
— Replace the adder with added by 2

m Decode stage

— Remove the THUMB decompressor
— Modify the Decoder to decode THUMB directly
— Modify the register file to single mode

m Execution stage
— Modify multiplier
— Remove the adder after multiplier
— Cut the shifter before ALU path
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Decode THUMB instruction directly

Signals from execute stage

Register Register
Addressing File

32—bit\ ARM instruction
N

ARM
Instruction
Decoder

. Thumb to ARM
1 6'b{t Instruction
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T T-bit
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Control Signals
from execute stage

Decode Stage
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Execute stage modification
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Coding rules for reusing ARM7’s
Software Environment

| Declare “short ” instead of “int” in C language
the registers in SYS16TM are 16 bits

Remove shift instruction patterns
sGenerated by conventional 32-bit compiler
«Clear upper 16 bits value

* Emulating 16-bit computation with a 32-bit data path

C code ‘ @
SO EPS e @D
] ) G

’

mInterrupt table maintain the same addressing
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Chip size, clock frequency
-
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1SIMIC 0. 1sum Process ARM

Gate count
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m The gate count reduction
1.0 +
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Gate count reduction
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Static code Size : SYS16TM VS. ARM7

m SYS16TM’s code size I1s smaller : 61%

B ARM7 code size
7000 B SYS16TM code size

Code Size
w
ol
(@]
o

Benchmark
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Executed Internal Instruction count

m SYS16TM requires 1.12 times instruction count
comparing to ARM7 on average

Instruction Ratio

2.0 -
1.8-
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1.4-
1.2-
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0.8-
0.6 -
0.4
0.2-

0.0-
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G,

18/22



When considering limited memory
bandwidth

= With 32-bit memory bandwidth
— ARMY Is better than SYS16TM by 6%

m With 16-bit memory bandwidth
— SYS16TM is better than ARM7 by 64%

1.8
1.6
1.4
1.2
1.0
0.8-
0.6-

B ARM32 /SYS16
B ARM16 / SYS16

‘ ﬂ H Benchmark

a 9] 7, 0
Oo'ef 19/22
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Microprocessor energy consumption

m Consider the real-time application
— Assume both processors have to complete the applications at the

same time
Memory. Energy consumption; ratio
bandwidth (SYS16TM/ARMT)
32-bit 55%
16-bit 30%

1.0 -

0.9 -

0.8 - B SYS16TM/ARM32
0.7 B SYS16TM/ARM16
= 0.6 -

X 0.5
3 0.4
2 0.3
= 5.2
0.1
0.0 Benchmark

n
Cogy, 20/22



Outline

m Motivation
m Related Work

m Proposed Solution
— Register file merging
— Architecture modification
— Software tool reuse

m Experimental Result

m Conclusion

21/22



Conclusions:
SYS16TM VS. ARM7

m Proposed a 16-bit data 16-bit instruction THUMB
mIcroprocessor

m Features
— 60% smaller in gate count
— 39% smaller in the program size

— faster in the maximal clock rate under the same
technology

—51% for 0.18um

— 33% faster in cycles (@ same clock rate) under 16-bit
memory bandwidth

— More than 49% power reduction
— 70% energy reduction on 16-bit memory bandwidth

— Utilizing the existing ARM7's software development
environment with minor patching —



Thank You
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