il &

An Embedded Low Power/Cost 16-Bit
Data/Instruction Microprocessor Compatible
with ARM7 Software Tools

Fu-Ching Yang and Ing-Jer Huang

Dept. of Computer Science and
Engineering.

edded Jsemtam(Laboratory

Hailm un Yat-Sen University

National Sun Yat-Sen University,
Kaohsiung Taiwan

fcyang@esl.cse.nsysu.edu.tw
jhuang@cse.nsysu.edu.tw

12nd ASP-DAC, Jan. 26, 2007

Outline

= Motivation
m Related Work

m Proposed Solution
— Register file merging
— Architecture modification
— Software tool reuse

m Experimental Result

m Conclusion

2/22

Outline

= Motivation
m Related Work

m Proposed Solution
— Register file merging
— Architecture modification
— Software tool reuse

m Experimental Result

m Conclusion

3/22

Motivation

m Short-precision oriented applications
— Qver of the operations are less than 16 bits

+4
About 50% of the aasassasssss sl tlls TYTTTITIL A

operations are less than

16-bit

|
. ”,,.,

Bit Width

Bitwidths for SPECint95 on 64-bit Alpha.

Brooks, D. and Martonosi, M.,”"Dynamically exploiting narrow width operands to
Improve processor power and performance,” Proc. of Intl. Symposium on Fifth

High-Performance Computer Architecture, pp. 13-22, 1999.
4122

Outline

m Motivation
m Related Work

m Proposed Solution
— Register file merging
— Architecture modification
— Software tool reuse

m Experimental Result

m Conclusion

5/22

Related work

s Dynamic explore data bit width

m Static compiler analysis
— ARM7/ARMO cores:

— 32-bit RISC+CISC instruction set
— 16-bit RISC
— 32-bit data

s What if the major data types in your SoC are 8 or 16
bits?

— 32-bit data path may be an overkiller
— bad for performance, power, chip size, etc.

6/22

Memory bandwidth bottleneck

s ARM7/ARMO9 cores perform well
— Memory bandwidth : 32/64

s What if your SoC can not afford such bandwidth
— In cost-sensitive applications
— 16-bit bus: 2 cycles/per instruction (or data) fetch
— 8-bit bus: 4 cycles/per instruction (or data) fetch

7/22

Outline

m Motivation
m Related Work

m Proposed Solution
— Register file merging
— Architecture modification
— Software tool reuse

m Experimental Result

m Conclusion

8/22

Proposed solution

m A 16-bit Thumb Microprocessor — SYS16TM
— 16-bit instruction set: same as THUMB
— 16-bit data path
— An extra low cost ARM-based solution

— Compatible with most ARM’s existing development
tools

m Architecture challenges
1. Register file bank merging
2. Pipeline Trimming
3. Reuse ARM'’s develop environment

9/22

Register file bank merging

System &

User sFIR0~R4vpehGsbi{S Abort IRQ
3R-18p. LR, FChit32 bitg2-bit 32-bit
I]
G R EEEEES. S |
I

0 DeflelE ey inJig
S, =TS

cilar toRels

)
:

Undefined

32-bit

leLkE\Mo ke

10/22

Architecture Changes

m Fetch stage
— Replace the adder with added by 2

m Decode stage

— Remove the THUMB decompressor
— Modify the Decoder to decode THUMB directly
— Modify the register file to single mode

m Execution stage
— Modify multiplier
— Remove the adder after multiplier
— Cut the shifter before ALU path

11/22

Decode THUMB instruction directly

Signals from execute stage

Register Register
Addressing File

32—bit\ ARM instruction
N

ARM
Instruction
Decoder

. Thumb to ARM
1 6'b{t Instruction

N\
THUMB Decompressor
T T-bit

—
Q
~+~
9]
oy
o0
O
—
O
<
_—
QO
(o
oy
[

1nstruction eon

Control Signals
from execute stage

Decode Stage

12/22

Execute stage modification

13/22

Coding rules for reusing ARM7’s
Software Environment

| Declare “short ” instead of “int” in C language
the registers in SYS16TM are 16 bits

Remove shift instruction patterns
sGenerated by conventional 32-bit compiler
«Clear upper 16 bits value

* Emulating 16-bit computation with a 32-bit data path

C code ‘ @
SO EPS e @D
]) G

’

mInterrupt table maintain the same addressing

14/22

Outline

m Motivation
m Related Work

m Proposed Solution
— Register file merging
— Architecture modification
— Software tool reuse

m Experimental Result

m Conclusion

15/22

Chip size, clock frequency
-

SY 5 OrJ\/J//—\

1SIMIC 0. 1sum Process ARM

Gate count

Max. Clock rate (IMiHz)

[POWEr

m The gate count reduction
1.0 +

o84 1%

0.6
I 42 %

34%

Gate count reduction
o
N
|

Fetch Decode E xecution
Pipeline Stage 16/22

Static code Size : SYS16TM VS. ARM7

m SYS16TM’s code size I1s smaller : 61%

B ARM7 code size
7000 B SYS16TM code size

Code Size
w
ol
(@]
o

Benchmark

17/22

Executed Internal Instruction count

m SYS16TM requires 1.12 times instruction count
comparing to ARM7 on average

Instruction Ratio

2.0 -
1.8-
1.6
1.4-
1.2-
1.0-
0.8-
0.6 -
0.4
0.2-

0.0-

B SYS16TM/ARMY

Benchmark
V/o

9. Uy ho. Gn. T A,
R sty 0,0 boﬁa 0/7/9/3
C/

Q
(%
Q 4 @/700
G,

18/22

When considering limited memory
bandwidth

= With 32-bit memory bandwidth
— ARMY Is better than SYS16TM by 6%

m With 16-bit memory bandwidth
— SYS16TM is better than ARM7 by 64%

1.8
1.6
1.4
1.2
1.0
0.8-
0.6-

B ARM32 /SYS16
B ARM16 / SYS16

‘ ﬂ H Benchmark

a 9] 7, 0
Oo'ef 19/22

Cycle count ratio

=
.b
1

0.2-
0.0-

Microprocessor energy consumption

m Consider the real-time application
— Assume both processors have to complete the applications at the

same time
Memory. Energy consumption; ratio
bandwidth (SYS16TM/ARMT)
32-bit 55%
16-bit 30%

1.0 -

0.9 -

0.8 - B SYS16TM/ARM32
0.7 B SYS16TM/ARM16
= 0.6 -

X 0.5
3 0.4
2 0.3
= 5.2
0.1
0.0 Benchmark

n
Cogy, 20/22

Outline

m Motivation
m Related Work

m Proposed Solution
— Register file merging
— Architecture modification
— Software tool reuse

m Experimental Result

m Conclusion

21/22

Conclusions:
SYS16TM VS. ARM7

m Proposed a 16-bit data 16-bit instruction THUMB
mIcroprocessor

m Features
— 60% smaller in gate count
— 39% smaller in the program size

— faster in the maximal clock rate under the same
technology

—51% for 0.18um

— 33% faster in cycles (@ same clock rate) under 16-bit
memory bandwidth

— More than 49% power reduction
— 70% energy reduction on 16-bit memory bandwidth

— Utilizing the existing ARM7's software development
environment with minor patching —

Thank You

23/22

	An Embedded Low Power/Cost 16-Bit Data/Instruction Microprocessor Compatible with ARM7 Software Tools
	Outline
	Outline
	Motivation
	Outline
	Related work
	Memory bandwidth bottleneck
	Outline
	Proposed solution
	Register file bank merging
	Architecture Changes
	Decode THUMB instruction directly
	Execute stage modification
	Coding rules for reusing ARM7’s Software Environment
	Outline
	Chip size, clock frequency
	Static code Size : SYS16TM VS. ARM7
	Executed Internal Instruction count
	When considering limited memory bandwidth
	Microprocessor energy consumption
	Outline
	Conclusions:�SYS16TM VS. ARM7

