!'_ Multithreaded SAT Solving

Matthew Lewis, Tobias Schubert,
Bernd Becker

Univeristy of Freiburg, Germany

Overview

= Introduction to the Boolean Satisfiability Problem
= Sequential SAT Solving
= Distributed SAT Solving and Previous Work
x MiraXT
= Motivation
= Design & Implementation
= Results and Comparison to Other Solvers
= Summary & Future Work

SAT Introduction

= What are Boolean Satisfiability Problems?
= Contain Boolean variables

= Problems are defined in Conjunctive Normal Form (cnf)
= Consists of a conjunction of Clauses
= Each clause consist of the inclusive disjunction of literals
= If problem is SAT every clause must be satisfied

=« Complete solver must find a solution or prove unsolvable
« Hard problems (NP-Complete)

= Example: F(x;,..X,)=(2X;+X,) e (=X, + X, +X3) (X, + X, +X3)e...

SAT Introduction

= What are SAT solvers used for?
= Verification (Equivalence Checking, Bounded Model Checking)
= Automatic Test Pattern Generation
=« FPGA routing
= Al Planning

= Existing complete powerful SAT solvers:
= Sequential: zChaff, MiniSat, Siege, Mira, ...
= Parallel: GridSAT, PaSAT, PSATA, ySAT, MiraXT, ...
= All these solvers are based on the classical Davis-Putnam method

= Current solvers can handle industrial problems with millions of
clauses

Sequential SAT Solvers

F(X,--X,)=(aX+X;)o(=X; + X, +X3) o (aX, + X, +1X3)e....

1. Load the problem and perform some preprocessing
= Elimination of unused or one sided variables
2. Decision
= Select a variable and assigns it a value
3. Boolean Constraint Propagation Procedure (BCP)
= Find all implications and consequences of the decision
= Signal Conflict
4. Conflict Analysis Procedure
« Finds the reason for the conflict and backtracks if possible
= Records a conflict clause to prevent future possible conflicts

Parallel SAT Solving

= A Parallel SAT Solver in theory is simple:
= Divide the problem space and use multiple sequential SAT solvers

= However there are some important issues:
= How do we divide the search space?

= Communication
= Control and Synchronization
= Knowledge Sharing?

Parallel SAT Solving — Implementation

= Previous work based on loose integration (GridSAT, PSATO, ...)
= Normally, an existing sequential SAT solver can be used
= GridSAT uses zChaff, PSATO uses SATO

= Communication is done with Message Passing
= Relatively slow form of communication
= Significant overhead for every message Master
= Highly scalable:
= 100’s of machines can be connected with Ethernet

Clients

MiraXT — Motivation

Focus on workstations not grids
= Multi-core and multi-CPU workstations
Tighter integration of SAT Solver threads
= Shared memory used for communication and clause database
= Provides high bandwidth, low latency, low overhead communication
Improve Knowledge Sharing
= In GridSAT clause with 3 literals or less were shared
= In PaSATs “Clause Store” clauses with 5 literals or less were shared
= Due to message passing limitations clauses are sent in bundles
= Introduces significant latency in the knowledge sharing system

= Problem - clients choose the clauses they want to share

= Client should select the clauses they want to use based on their
current state!

Provide competitive single threaded performance

MiraXT — Design

= Tight integration of SAT Solver threads
= Use of shared memory clause database
= No Master Process
= Shared object used for control signals and communication

Master
Process
versus

g
Process 0 Process 1

Process 0

Clause Database

Solver Solver
{Thread OI MCO IThread 1}

Clause db

[)
Solver
[Thread 0 J

Clause db

[)
{ Solver J
Thread 1

MiraXT — Shared Clause Database

= What we need from the Clause Database:

= Fast insertion of new clauses
= Very little or No Lock Contention (only a pointer insertion)
= Unimpeded use of clauses by BCP procedure
= Clause are read only
= Fast independent deletion of unused clauses

/ Clause db \

Thread

"

h

_«___

— New Conflict Clauses
- — = Threads Current Position

Thread

10

MiraXT — Shared Clause Database

= What we need from the Clause Database:

= Fast insertion of new clauses
= Very little or No Lock Contention (only a pointer insertion)
= Unimpeded use of clauses by BCP procedure
= Clause are read only
= Fast independent deletion of unused clauses

/ Clause db \

Thread

"

— New Conflict Clauses
- — = Threads Current Position

Thread

11

MiraXT — Shared Clause Database

Problem:
= Clauses are read only (cannot easily mark WL)

= Where are the clauses physically located?
= Remote memory is slower than local memory
Solution: Watched Literal Reference List (WLRL)
= Basic idea: each thread has a partial local copy of every clause
= Contains and provides fast access to both WL (fast BCP)
= Contains a cache variable
= CV is easy to calculate, it is the old WL if the WL is replaced

= Unit, binary, and ternary clauses are fully contain within structure

12

i MiraXT — Watched Literal Reference List

= WLRL — Contains a partial reference copy of every clause

~

Thread O

WLO

WL1

cv |/\

/

~

-

Clause db
C, Clause
Cd-lf\‘| Clause
Cd-2
Clause

—/

Ccv

13

MiraXT — Sub-problem Generation

= First come first serve (not served)
= Optimal first DL splitting variable taken with 2 threads
= Very low overhead technique
= Pre-processing important
« Elimination of many possible splitting variables
= Reduces redundancy in the problem

————— Thread #1 Path
""" “Thread #2 Path
O Decision
O Implication

’ Splitting
., = Variable

14

MiraXT — Master Control Object

= All communication is done in a passive way
= Threads poll a simple Boolean flag to check for new events
= If there are new events a more complicated procedure is run
= This procedure requires locks
= What object does it contain?
= Decision Stack Queue
= First client thread to respond to message donates a decision stack
= Once a sub-problem is added, a sleeping thread is signalled

= Queue of sleeping threads
= Idle threads are put to sleep so they don't waste CPU cycles
= Sleeping threads are served randomly with new sub problems

= Statistics

15

MiraXT Solver Threads

Sequential MiraXT solver Highlights:

= Pre-processing
= Variable and Clause Elimination (satELite)
= Unit Propagation Look Ahead (Berre)
= Advanced Decision Heuristic with Random Restarts
= Modified Variable State Independent Decaying Sum (zChaff)
= Boolean Constraint Propagation (BCP)
= Use of watched literals (zChaff)
= Early Conflict Detection Based BCP with I1QS (Mira)
= Conflict Analysis

= First UIP based, with non-chronological backtracking and conflict
clause recording (zChaff/Grasp)

= Conflict Clause Deletion (Berkmin)

16

MiraXT Design Results

Almost No Lock Contention

= Only a few contention per second (2-3/s with 2 threads)

= Problem with ySAT (up to 10% of time spent waiting)
Cache Variable Performance

= 84% of clauses are evaluated with only the WLRL

= Can store entire unit, binary, and ternary clauses
Excellent BCP/Sec Scaling (Industrial example)

17

* MiraXT Design Results — BCP

MCE/s

45
40
35
30
25
20
15
10

Solver Efficiency - 2P AMD System

Mira2T

SatElite MiralT

Solver

18

MiraXT — Comparison to Other Solvers

= Benchmarks
=« 2004 IBM Bounded Model Checking Benchmarks (over 1000)
= Industrial 2005 Benchmarks from the SAT 2005 Competition
= All benchmarks were pre-processed by SatELite

= Used an AMD Dual Processor Linux System
= 2 Opteron processors running @ 2.6 GHz
= 2 GB of memory per processor (4 GB total)
= SMP Linux Kernel 2.6.*

19

Results

Comparison of Solvers

IBM BMC 2004 | Industrial 2005
Solver T2 49 T2 #S
Mira2Ta 81.4 923 18.4| 183
Mira2Th 86.5 923 20.7| 182
MiralT 120.2 900 264 178
SatELite 116.9 901 285| 176
zChaff 327.4 784 359 175
ySat2T 509.6 709 994 | 136
ySatlT 615.0 649 100.1| 135

20

Results

Comparison of Solvers

IBM BMC 2004 | Industrial 2005
Solver T2 49 T2 #S
Mira2Ta 81.4 923 18.4| 183
Mira2Tb 86.5 923 20.7| 182
MiralT 120.2 900 26.4| 178
SatEL ite 116.9 901 285| 176
zChaff 327.4 784 359 175
ySat2T 509.6 709 994 | 136
ySatlT 615.0 649 100.1| 135

21

Results

Comparison of Solvers

IBM BMC 2004 | Industrial 2005
Solver T2 49 T2 #S
Mira2Ta 814 923 18.4| 183
Mira2Th 86.5 923 20.7| 182
MiralT 120.2 900 26.4| 178
SatELite 116.9 901 285| 176
zChaff 327.4 784 359 175
ySat2T 509.6 709 994 | 136
ySatlT 615.0 649 100.1| 135

22

Results

Comparison of Solvers

IBM BMC 2004 | Industrial 2005
Solver T2 49 T2 #S
Mira2Ta 81.4 923 18.4| 183
Mira2Tb 86.5 923 20.7| 182
MiralT 120.2 900 26.4| 178
SatELite 116.9 901 285| 176
zChaff 327.4 784 359 175
ySat2T 509.6 709 994 | 136
ySatlT 615.0 649 100.1| 135

23

Summary

Single threaded performance is Competitive

= Competitive with SatELite, 2005 & 2006 SAT competition winner
Introduced efficient data structures for multithreaded SAT solving

= Excellent BCP scaling
Threaded speedup of = 45% on BMC and Industrial benchmarks

= 51 % and 41% speedup for SAT and UNSAT benchmarks

Future Work
= Combining MiraXT with message passing to allow better scalability

24

