
Multithreaded SAT Solving

Matthew Lewis, Tobias Schubert, 
Bernd Becker

Univeristy of Freiburg, Germany



2

Overview

� Introduction to the Boolean Satisfiability Problem

� Sequential SAT Solving

� Distributed SAT Solving and Previous Work

� MiraXT

� Motivation

� Design & Implementation

� Results and Comparison to Other Solvers

� Summary & Future Work



3

SAT Introduction

� What are Boolean Satisfiability Problems?

� Contain Boolean variables

� Problems are defined in Conjunctive Normal Form (cnf)

� Consists of a conjunction of Clauses

� Each clause consist of the inclusive disjunction of literals

� If problem is SAT every clause must be satisfied

� Complete solver must find a solution or prove unsolvable

� Hard problems (NP-Complete)

� Example: F(x1,..xn)=(¬x1+x2)•(¬x1+¬x2+x3)•(¬x1+¬x2+¬x3)•…



4

SAT Introduction

� What are SAT solvers used for?

� Verification (Equivalence Checking, Bounded Model Checking)

� Automatic Test Pattern Generation

� FPGA routing

� AI Planning

� Existing complete powerful SAT solvers:

� Sequential: zChaff, MiniSat, Siege, Mira, …

� Parallel: GridSAT, PaSAT, PSATA, ySAT, MiraXT, …

� All these solvers are based on the classical Davis-Putnam method

� Current solvers can handle industrial problems with millions of 
clauses



5

Sequential SAT Solvers

F(x1,..xn)=(¬x1+x2)•(¬x1+¬x2+x3)•(¬x1+¬x2+¬x3)•…

� 1. Load the problem and perform some preprocessing

� Elimination of unused or one sided variables 

� 2. Decision

� Select a variable and assigns it a value

� 3. Boolean Constraint Propagation Procedure (BCP)

� Find all implications and consequences of the decision

� Signal Conflict

� 4. Conflict Analysis Procedure

� Finds the reason for the conflict and backtracks if possible

� Records a conflict clause to prevent future possible conflicts



6

Parallel SAT Solving

� A Parallel SAT Solver in theory is simple:

� Divide the problem space and use multiple sequential SAT solvers

� However there are some important issues:

� How do we divide the search space?

� Communication

� Control and Synchronization

� Knowledge Sharing?



7

Parallel SAT Solving – Implementation

� Previous work based on loose integration (GridSAT, PSATO, …)

� Normally, an existing sequential SAT solver can be used

� GridSAT uses zChaff, PSATO uses SATO

� Communication is done with Message Passing

� Relatively slow form of communication

� Significant overhead for every message

� Highly scalable:

� 100’s of machines can be connected with Ethernet 

Master

Clients



8

MiraXT – Motivation

� Focus on workstations not grids

� Multi-core and multi-CPU workstations

� Tighter integration of SAT Solver threads

� Shared memory used for communication and clause database
� Provides high bandwidth, low latency, low overhead communication

� Improve Knowledge Sharing 

� In GridSAT clause with 3 literals or less were shared
� In PaSATs ”Clause Store” clauses with 5 literals or less were shared

� Due to message passing limitations clauses are sent in bundles
� Introduces significant latency in the knowledge sharing system

� Problem - clients choose the clauses they want to share
� Client should select the clauses they want to use based on their
current state!

� Provide competitive single threaded performance



9

MiraXT – Design

� Tight integration of SAT Solver threads

� Use of shared memory clause database

� No Master Process

� Shared object used for control signals and communication

MiraXT

Process 0

Solver
Thread 0

Solver 
Thread 1

Clause Database

GridSAT

Process 0

Solver
Thread 0

Clause db

Process 1

Solver
Thread 1

Clause db
MPI

versus

MCO

Master
Process

MPIMPI



10

MiraXT – Shared Clause Database

� What we need from the Clause Database: 

� Fast insertion of new clauses

� Very little or No Lock Contention (only a pointer insertion)

� Unimpeded use of clauses by BCP procedure

� Clause are read only

� Fast independent deletion of unused clauses

Thread
1

Thread
0

New Conflict Clauses
Threads Current Position

C1

...

Cd-2

Cd-1

Cd

Clause db



11

MiraXT – Shared Clause Database

� What we need from the Clause Database: 

� Fast insertion of new clauses

� Very little or No Lock Contention (only a pointer insertion)

� Unimpeded use of clauses by BCP procedure

� Clause are read only

� Fast independent deletion of unused clauses

Thread
1

Thread
0

New Conflict Clauses
Threads Current Position

C1

...

Cd-2

Cd-1

Cd

Clause db



12

MiraXT – Shared Clause Database

� Problem:

� Clauses are read only (cannot easily mark WL)

� Where are the clauses physically located? 

� Remote memory is slower than local memory

� Solution: Watched Literal Reference List (WLRL)

� Basic idea: each thread has a partial local copy of every clause

� Contains and provides fast access to both WL (fast BCP)

� Contains a cache variable

� CV is easy to calculate, it is the old WL if the WL is replaced

� Unit, binary, and ternary clauses are fully contain within structure



13

MiraXT – Watched Literal Reference List

CVWL1WL0

Thread 1

C1

...

Cp-2

Cp-1

Cp

CVWL1WL0

Thread 0

C1

...

Ck--2

Ck-1

Ck
Clause

Clause db

…

C1

...

Cd-2

Cd-1

Cd

Clause

Clause

� WLRL – Contains a partial reference copy of every clause



14

MiraXT – Sub-problem Generation

� First come first serve (not served)

� Optimal first DL splitting variable taken with 2 threads

� Very low overhead technique

� Pre-processing important

� Elimination of many possible splitting variables

� Reduces redundancy in the problem

Thread #1 Path
Thread #2 Path
Decision
Implication

Splitting 
Variable



15

MiraXT – Master Control Object

� All communication is done in a passive way

� Threads poll a simple Boolean flag to check for new events

� If there are new events a more complicated procedure is run

� This procedure requires locks

� What object does it contain?

� Decision Stack Queue

� First client thread to respond to message donates a decision stack

� Once a sub-problem is added, a sleeping thread is signalled 

� Queue of sleeping threads

� Idle threads are put to sleep so they don’t waste CPU cycles

� Sleeping threads are served randomly with new sub problems

� Statistics



16

MiraXT Solver Threads

� Sequential MiraXT solver Highlights:

� Pre-processing 

� Variable and Clause Elimination (satELite)

� Unit Propagation Look Ahead (Berre)

� Advanced Decision Heuristic with Random Restarts

� Modified Variable State Independent Decaying Sum (zChaff)

� Boolean Constraint Propagation (BCP)

� Use of watched literals (zChaff)

� Early Conflict Detection Based BCP with IQS (Mira)

� Conflict Analysis

� First UIP based, with non-chronological backtracking and conflict 
clause recording (zChaff/Grasp)

� Conflict Clause Deletion (Berkmin)



17

MiraXT Design Results

� Almost No Lock Contention

� Only a few contention per second (2-3/s with 2 threads)

� Problem with ySAT (up to 10% of time spent waiting)

� Cache Variable Performance

� 84% of clauses are evaluated with only the WLRL

� Can store entire unit, binary, and ternary clauses

� Excellent BCP/Sec Scaling (Industrial example)



18

MiraXT Design Results – BCP

Solver Efficiency - 2P AMD System

zChaff

SatElite Mira1T

Mira2T

0

5

10

15

20

25

30

35

40

45

Solver

M
C

E
/s



19

MiraXT – Comparison to Other Solvers

� Benchmarks

� 2004 IBM Bounded Model Checking Benchmarks (over 1000)

� Industrial 2005 Benchmarks from the SAT 2005 Competition

� All benchmarks were pre-processed by SatELite

� Used an AMD Dual Processor Linux System

� 2 Opteron processors running @ 2.6 GHz

� 2 GB of memory per processor (4 GB total)

� SMP Linux Kernel 2.6.*



20

Results

Comparison of Solvers

135100.1649615.0ySat1T

13699.4709509.6ySat2T

17535.9784327.4zChaff

17628.5901116.9SatELite

17826.4900120.2Mira1T

18220.792386.5Mira2Tb

18318.492381.4Mira2Ta

#ST2#ST2

Industrial 2005IBM BMC 2004
Solver



21

Results

Comparison of Solvers

135100.1649615.0ySat1T

13699.4709509.6ySat2T

17535.9784327.4zChaff

17628.5901116.9SatELite

17826.4900120.2Mira1T

18220.792386.5Mira2Tb

18318.492381.4Mira2Ta

#ST2#ST2

Industrial 2005IBM BMC 2004
Solver



22

Results

Comparison of Solvers

135100.1649615.0ySat1T

13699.4709509.6ySat2T

17535.9784327.4zChaff

17628.5901116.9SatELite

17826.4900120.2Mira1T

18220.792386.5Mira2Tb

18318.492381.4Mira2Ta

#ST2#ST2

Industrial 2005IBM BMC 2004
Solver



23

Results

Comparison of Solvers

135100.1649615.0ySat1T

13699.4709509.6ySat2T

17535.9784327.4zChaff

17628.5901116.9SatELite

17826.4900120.2Mira1T

18220.792386.5Mira2Tb

18318.492381.4Mira2Ta

#ST2#ST2

Industrial 2005IBM BMC 2004
Solver



24

Summary

� Single threaded performance is Competitive

� Competitive with SatELite, 2005 & 2006 SAT competition winner

� Introduced efficient data structures for multithreaded SAT solving

� Excellent BCP scaling

� Threaded speedup of ≈ 45% on BMC and Industrial benchmarks 

� 51 % and 41% speedup for SAT and UNSAT benchmarks

� Future Work

� Combining MiraXT with message passing to allow better scalability


