
Fixing Design Errors Fixing Design Errors
with Counterexamples with Counterexamples
and Resynthesisand Resynthesis

KaiKai--hui Chang, hui Chang,
Igor L. Markov and Valeria BertaccoIgor L. Markov and Valeria Bertacco

University of Michigan at Ann Arbor

Jan. 26, 2007

2

Current Design Challenges

Explosive design complexity –
verification becomes
more difficult

50% of the designs will have
functional mistakes at the first tape-out

Verification limits the features that can
be implemented in a design [Chayut’06]

Decreased time to market →
shorter verification time
Respin is expensive

Mask cost is approaching $1 million per set

Pre-silicon Post-silicon

180nm

130nm > 28% of
TTM !

90nm > 35% of
TTM ?

~ 17% of
TTM

3

Current Trends

Testbench generation and verification
have been automated
Error diagnosis and correction
are still manual

4

Current Trends

Testbench generation and verification
have been automated
Error diagnosis and correction
are still manual
Diagnosing and correcting design bugs
are especially difficult at the gate level

Engineers unfamiliar with synthesized netlists
Bug fixing is difficult, time-consuming

5Manual functional error correction

Synthesis and
optimization

Gate level
netlist

Verification
(Equivalence checking/

simulation) Golden
netlist

Pass

Fail

Counterexample

Error diagnosis
and correction

Repaired
netlist

Current Back End Logic Design Flow
RTL golden

model High-level golden
testbench, model

(C,C++,SystemC...)

6
Proposed Framework

Synthesis and
optimization

Gate level
netlist

Verification
(Equivalence checking/

simulation) Golden
netlist

Pass
Fail

Counterexample

Automatic
error diagnosis
and correction

Repaired
netlist

Proposed Back End Logic Design Flow
RTL golden

model High-level golden
testbench, model

(C,C++,SystemC...)

7
CoRé Framework

Contributions

COunterexample-guided REsynthesis
framework (CoRé) for combinational circuits

Abstraction: signatures produced by simulation
Refinement: counterexamples that fail verification

Original
netlist

Test vectors,
output responses

Repaired
netlist

Diagnose
errors

Resynthesize

Verify

Fail

Pass Correct
netlist

8
CoRé Framework

COunterexample-guided REsynthesis
framework (CoRé) for combinational circuits

Abstraction: signatures produced by simulation
Refinement: counterexamples that fail verification

Contributions

Original
netlist

Test vectors,
output responses

Repaired
netlist

Diagnose
errors

Resynthesize

Verify

Fail

Pass Correct
netlist

Effective resynthesis techniques:
．Entropy-Guided Search (EGS)

．Goal-Directed Search (GDS)
Pairs of Bits to be Distinguished (PBDs)
- An efficient simplification of SPFDs that
encodes required information for resynthesis

9

Outline

CoRé Framework
Resynthesis techniques

Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

Previous work
Experimental results
Conclusions

10

Error Diagnosis
1. To model errors: insert MUXes into the circuit
2. To limit the number of allowed errors:

use an adder and a comparator
3. Convert the circuit to CNF
4. Constrain inputs/outputs using

input vectors/correct output responses

Error modeling Error-cardinality constraint

[Smith et al., ASPDAC’04]

1

0

11

I1

CoRé Framework

Simulate bug traces to generate signatures

g1

0

1
0

g21

S0

0

0
S1

0
w1I2

I3

O2

O1

12

CoRé Framework

Simulate bug traces to generate signatures

g1

01

11
01

g210

S0

00

01
S1

00
w1

I1

I2

I3

O2

O1

13

CoRé Framework

Simulate bug traces to generate signatures

g1

011

111
011

g2101

S0

001

011
S1

001
w1

I1

I2

I3

O2

O1

14

CoRé Framework
Simulate bug traces to generate signatures

g1

0110

1110
0110

g21010

S0

0010

0110
S1

0010

A signature of a signal is its partial truth-table
- provides an abstraction of its underlying logic

w1

I1

I2

I3

O2

O1

15

CoRé Framework
Simulate bug traces to generate signatures

Error-sensitizing vectors
Functionality-preserving vectors

g1

0110

1110
0110

g21010

S0

0010

0110
S1

0010

g1

0110

1110
0110

g21010

S0

0010

1110
S1

1010

w1

w1

I1

I2

I3

O2

O1

I1

I2

I3

O2

O1

16

CoRé Framework
Simulate bug traces to generate signatures

Error-sensitizing vectors
Functionality-preserving vectors

Perform error diagnosis using error-sensitizing vectors
Error sites and values to correct outputs of
error-sensitizing vectors are returned

g1

0110

1110
0110

g21010

S0

1010

1110
S1

1010
w1

1

I1

I2

I3

O2

O1

17

CoRé Framework
Simulate bug traces to generate signatures

Error-sensitizing vectors
Functionality-preserving vectors

Perform error diagnosis using error-sensitizing vectors
Error sites and values to correct outputs of
error-sensitizing vectors are returned

Resynthesize the error site using the signature
Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

g2

0110

1110
0110

1010

S0

1110
S1

1010

1

1010
?

w1

1110I1

I2

I3

O2

O1

18

gn

CoRé Framework

Refinement of abstraction
If the fix is incorrect, new bug traces will
be used to refine the signatures

g2

0110

1110

1010

S0

1110
S1

1010

1

1010w1

1110

1

X 1

X

I1

I2

I3

O2

O1

S0

g2

01100

11101

10101

11100
S1

10100
10100w1

11100

Returned by
verification

I1

I2

I3

O2

O1gn

19

gn

CoRé Framework

Refinement of abstraction
If the fix is incorrect, new bug traces will
be used to refine the signatures

g2

0110

1110

1010

S0

1110
S1

1010
1010w1

1110

1

g2

01100

11101

10101

S0

11101 S1

10101

1 1

10101w1

11100

Diagnose
new vector

I1

I2

I3

O2

O1

I1

I2

I3

O2

O1

gn

20

gn

CoRé Framework

Refinement of abstraction
If the fix is incorrect, new bug traces will
be used to refine the signatures

g2

0110

1110

1010

S0

1110
S1

1010

1

1010w1

1110

g2

01100

11101

10101

S0

11101 S1

10101

1 1

10101w1

11101?

Resynthesize
using refined

signature

I1

I2

I3

O2

O1

I1

I2

I3

O2

O1

21

Outline

CoRé Framework
Resynthesis techniques

Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

Previous work
Experimental results
Conclusions

22

The Resynthesis Problem

Problem formulation
Given a target signature
Find a resynthesis netlist
that generates the target
signature using other signatures

How to find input signatures that can
generate the target signature?
How to find a resynthesis netlist
using the input signatures?

I1

I2

0110

1110 ?
w1

1110

…

23

Selecting Input Signatures

Target signature (st) 0 0 1 1 1
Candidate signature 1 (sc1) 1 0 1 1 0
Candidate signature 2 (sc2) 1 1 1 1 0
Bit index 1 2 3 4 5

Target signature cannot be generated using
these two signatures

Values of bits {1, 3} are different in the target
signature but are the same in all candidate signatures

{1, 3}

24

Selecting Input Signatures

Target signature (st) 0 0 1 1 1
Candidate signature 1 (sc1) 1 0 1 1 0
Candidate signature 2 (sc2) 0 1 1 1 0
Bit index 1 2 3 4 5

The target signature can be generated using
the candidate signatures

st = sc1 ♁ sc2

For any pair of bits in the target signature
whose values are different

The corresponding bits in candidate signatures are
never the same

25

Selecting Input Signatures

Target signature (st) 0 0 1 1 1
Candidate signature 1 (sc1) 1 0 1 1 0
Candidate signature 2 (sc2) 0 1 1 1 0
Bit index 1 2 3 4 5

The target signature can be generated using
the candidate signatures

st = sc1 ♁ sc2

For any pair of bits in the target signature
whose values are different

The corresponding bits in candidate signatures are
never the same

Theorem 1 [Zhang, IWLS’05]
Consider candidate signatures sc1 , sc2 ,...,scn
and a target signature st
Then a resynthesis function F, where
st = F(sc1 , sc2 ,...,scn), exists
if and only if no bit pair {i, j} exists such that
st[i] ≠ st[j] but sck[i] = sck[j] for all 1 ≤ k ≤ n.

26

Pairs of Bits to be Distinguished

Pair of Bits to be Distinguished (PBD)
A pair of bits in the target signature, indexed {i, j},
whose values are different
A PBD can be distinguished by a candidate
signature sck if sck[i] ≠ sck[j]

For a resynthesis netlist to exist, all the PBDs
in the target signature must be distinguished

This is a necessary and sufficient condition

Target signature (st) 0 0 1 1 1
Candidate signature 1 (sc1) 1 0 1 1 0
Candidate signature 2 (sc2) 0 1 1 1 0
Bit index 1 2 3 4 5

A PBD

Distinguished
by sc2

27

Entropy of a Signature

Target signature st: 0000000 1111111111

Candidate signature sc: 0011010 1101010111

x 0s y 1s

p 0s q 1s r 0s s 1s

Projected entropy of sc w.r.t. st :
p × s + q × r (number of PBDs distinguished by sc)

Entropy of a signature : x × y
(number of PBDs in the target signature)

x bits y bits

Note: To simplify book keeping, bits in all signatures are rearranged
so that the target signature resembles “0…01…1”

28

Entropy - Example

st can be generated using sc1, sc2, sc3
All PBDs can be distinguished
Resynthesis function is st=sc1 & sc2 | sc3

st cannot be generated using sc1, sc4
Not all PBDs can be distinguished
SignatureEntropy(st) < PE(sc1) + PE(sc4)

Signature st sc1 sc2 sc3 sc4

Pattern 00111 01011 10110 00101 00001

Entropy 6 3 3 4 2

29

Use of Entropy

Theorem2
Consider a set of candidate signatures sc1 ,
sc2 ,...,scn and a target signature st

If st can be generated by sc1 , sc2 ,...,scn
then SignatureEntropy(st) ≤ ∑PE(sci)

A necessary, but not a sufficient
condition

30

Entropy-Guided Search

PBDs are used to select candidate
signatures

Signatures that cover least-covered PBDs
Signatures with high entropy
Signatures that cover any uncovered PBDs

A truth table is built using the selected
signatures

Minterms not in the table are don’t-cares
The truth table can be synthesized by
existing logic synthesis tools

31

EGS Example

Signature Truth table
I1 I2 I3 I4 St

0 1 1 0
1 1 1 1
1 1 0 0
0 0 1 0

1
1
1
0

Synthesized 0 0 - - 0

St=1110
I1=0110
I2=1110
I3=1101
I4=0100

Resynthesis function: st= I1 | I2

The function is not unique

32

Outline

CoRé Framework
Resynthesis techniques

Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

Previous work
Experimental results
Conclusions

33

Goal-Directed Search

Recursively searches for valid
resynthesis options

Branches using different gate types
Considers combinations of different inputs

Efficient pruning techniques
Controlling values of logic gates
Entropy test – Theorem 2

34

Outline

CoRé Framework
Resynthesis techniques

Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

Previous work
Experimental results
Conclusions

35

Previous Work
Technique ED/

EC
Num. of
Errors

Error
model

Scalability Requirement

ACCORD Both Single SLDE Moderate (BDDs) Func. spec.

AutoFix Both Multiple None Moderate (BDDs) Golden netlist

ICCAD’89 Both Multiple None Moderate (BDDs) Golden netlist

PRIAM Both Single PRIAM Moderate Func. spec.

CHARME’05 Both Multiple None Moderate Func. spec.

EDAC’92 ED Single Abadir Good (ATPG) Test vectors

TCAD’99 Both Multiple Abadir Good (ATPG) Test vectors

ASPDAC’04 ED Multiple None Good (SAT) Test vectors

CoRé Both Multi-
ple

None Good (SAT,
simulation)

Test vectors

36

Outline

CoRé Framework
Resynthesis techniques

Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

Previous work
Experimental results
Conclusions

37

Experimental Results

EGS
Runtime (sec)

Error
diagnosis

Error
correction

Verifi-
cation

Number of
iterations

S1488 636 Gate change 4 1 1 1
S15850 685 Connection

change
5 2 1 1

S13207 1219 Multiple gate
change

6 1 1 1

S38584 6727 Gate change 306 1 81 1
AC97_Ctrl 11855 Multiple

connection
change

1032 2 252 5

Bench-
mark

Gate
count

Type of error
injected

Enforcement of equivalency, 1024 initial vectors

38

Experimental Results

EGS
Runtime (sec)

Error
diagnosis

Error
correction

Verifi-
cation

Number
of

iterations
S1488 1024 4 1 1 1
S1488 64 4 1 1 3

S15850 1024 5 2 1 1
S15850 64 4 53 5 42

S9234_1 1024 9 1 1 1
S9234_1 64 10 1 3 4

Bench-
mark

Initial
vector

number

Enforcement of equivalency
Mimicking difficult errors with smaller number of initial vectors

39

Fixing Multiple Errors

0

5

10

15

20

25

30

35

40

45

50

S1488(EGS) S13207(EGS) S15850(EGS)

N
um

be
r

of
 it

er
at

io
ns

Error1 Error1+2 Error1+2+3

40

Fixing Errors in Sequential Circuits
Repair incorrect output responses of the given 32 bug traces
Bugs were injected at the RTL

Benchmark Description #Cells Bug description

Pre_norm Part of FPU 1877 OR replaced by AND

MD5 MD5 full chip 13111 Incorrect state transition

DLX1 JAL Inst. Leads to incorrect bypass from
MEM stage

DLX2 Incorrect inst. forwarding

5-stage pipeline
MIPS-Lite CPU

14725

773826177DLX2

17036910047DLX1

36.5545910MD5

2.7136.320Pre_norm

EGS time (sec)Err. Diag. time (sec)#CyclesBenchmark

41

Outline

CoRé Framework
Resynthesis techniques

Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

Previous work
Experimental results
Conclusions

42

Conclusions

CoRé framework
Based on abstraction and refinement of signatures
Only uses test vectors and output responses

Can be applied to most design flows

An efficient simplification of SPFDs –
Pairs of Bits to be Distinguished (PBDs)

Compactly encode information for resynthesis

Effective resynthesis techniques
Entropy-Guided Search (EGS)
Goal-Directed Search (GDS)

	Fixing Design Errors �with Counterexamples �and Resynthesis
	Current Design Challenges
	Current Trends
	Current Trends
	Current Back End Logic Design Flow
	Proposed Back End Logic Design Flow
	Contributions
	Contributions
	Outline
	Error Diagnosis
	CoRé Framework
	CoRé Framework
	CoRé Framework
	CoRé Framework
	CoRé Framework
	CoRé Framework
	CoRé Framework
	CoRé Framework
	CoRé Framework
	CoRé Framework
	Outline
	The Resynthesis Problem
	Selecting Input Signatures
	Selecting Input Signatures
	Selecting Input Signatures
	Pairs of Bits to be Distinguished
	Entropy of a Signature
	Entropy - Example
	Use of Entropy
	Entropy-Guided Search
	EGS Example
	Outline
	Goal-Directed Search
	Outline
	Previous Work
	Outline
	Experimental Results
	Experimental Results
	Fixing Multiple Errors
	Fixing Errors in Sequential Circuits
	Outline
	Conclusions

