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Quantum Computing

n The fundamental limits of CMOS 
technology

n The enormous amount of required 
processing power for future applications

n New computational models
n Quantum computing
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Synthesis

n Quantum information processing is in the 
preliminary state

n No mature synthesis method for quantum 
circuit synthesis has been proposed yet

n A systematic algorithm for Boolean 
reversible circuit synthesis
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Boolean Reversible Functions

n n-input, n-output, 
n Maps each input assignment to 

a unique output assignment 
n Example: a 3-input, 3-output 

function (0,1,2,7,4,5,6,3)
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Power dissipation

n R. Landauer in IBM Journal, 1961
n Every lost bit causes an energy loss
n When a computer erases a bit of information, 

the amount of energy dissipated into the 
environment is at least kBTln2 

n C. Bennett, IBM Journal, 1973
n To avoid power dissipation in a circuit, the 

circuit must be built with reversible gates 
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Applications of reversible circuits
n Low power CMOS design 

n Reversible 4-bit adder
n “A reversible carry-look-ahead adder using control gates”, 

Integration, the VLSI Journal, vol. 33, pp. 89-104, 2002
n 384 transistors with no power rails

n Optical computing 
n Quantum computing

n Each unitary quantum gate is intrinsically reversible



8

Basic Concept
n Reversible gate
n Various reversible gates

n CNOT-based gates
n NOT, CNOT, C2NOT (Toffoli), …

n Generalized Toffoli gate
n Positive controls
n Negative controls
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Matrix representation
n An n-qubit gate has a unitary 2n×2n matrix, 

QMatrix, describing its functionality.
n The QMatrix of an n-qubit quantum circuit is 

well-formed if it has the following two conditions:
n Matrix elements can only be zeros or ones.
n Each column or row has exactly one element with a 

value of 1.
n CNOT-based quantum circuits & Boolean 

reversible circuits have well-formed QMatrices
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Reversible Circuits
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Synthesis Algorithms Categories

n Transformation-based algorithms
n Used to improve the cost of circuit
n Applied on the results of other algorithms
n Usually use templates to optimize a circuit
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Synthesis Algorithms Categories (Cnt’d)

n Constructive algorithms 
n Construct a circuit from a given specification 

(i.e. truth table, PPRM expansion, decision 
diagrams, …)

n The resulted cost may not be optimized
n The time complexity of the algorithm may be 

too high
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The Proposed Algorithm

n Definition: Lk QTranslation 
n The application of a k-qubit gate with matrix G 

on a quantum circuit with a QMatrix M
n The result of using an Lk QTranslation is the 

same as multiplication of M by G, i.e. MG
n The result of using an Lk QTranslation is also 

well-formed 
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The Proposed Algorithm

n Definition: Quantum pair (QPairi,j) 
n Two rows form a quantum matrix (QPairi,j) if 

the numbers i and j differ in only one bit 
position

n Definition: CkQPair
n The 2k rows of a QMatrix the row numbers of 

which have the same value on their n-k bit 
locations form a single group called CkQPair
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The Goal of the Algorithm

n The goal of MOSAIC is to decompose a 
given QMatrix into several elementary 
QMatrices of CNOT-based gates efficiently. 
n By generating a set of ordered Lk QTranslation 
n When applied to the QMatrix M, generates an 

identity matrix I
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Applying an Lk QTranslation

n Lemma 1 and Lemma 2 explain the results 
of using an Lk QTranslation on a given 
QMatrix M
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The MOSAIC Algorithm

Select the cth column of 
the given QMatrix

set r to be the c row 
number which has a 

value of 1

if the rth row is not 
marked as visited

if the bth bits of r and c 
are not equal

find the number p which 
differs with r in its bth bit
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The MOSAIC Algorithm

set q to be the column 
number of row p which 

has a value of 1

if q != p  and p >= r

exchange the locations 
of the pth and rth rows

mark the pth and rth rows 
as visited

Repeat the previous 
steps for all columns and 
all bits until M has been 

changed to identity 
matrix
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Example (1)
n c: Brown box 
n p: Green box
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c= 1 (001)

p=1 (001)

Example (2)

n Gray Box: visited rows

r=0 (000)
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c= 2 (010)

Example (3)
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p=3 (011)

c= 3 (011)

Example (4)
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c= 4 (100)
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p=5 (101)

c= 5 (101)

Example (6)
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c= 6 (110)

Example (7)
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Example (8)
c= 7 (111)
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Example (After the first step)
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After the last step (identity matrix)
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Gate Extraction

n Each set of row exchanges corresponds to a 
gate.

n For example:
n (6 & 7), (0 & 1), (2 & 3) and (4 & 5) swap 

operations correspond to a NOT gate applying 
on the last (b=0) qubit

n (6 & 7), (2 & 3) swap operations correspond to 
a CNOT gate with the second qubit as its 
control and the last qubit as its target
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The Algorithm Convergence

n Theorem 1: The MOSIC algorithm will 
converge to a possible implementation after 
several steps
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The Time Complexity

n Assumption: At most h gates are needed
n Search-based method

n n×2n-1 gates must be evaluated to select the best 
possible gates at each step 

n O(n×2n)h gates should be evaluated
n The MOSAIC algorithm needs O(h×2n) 

steps to reach a result

11
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3
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21 2)...(2 −−
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Experimental Results

2301396444(0,7,6,9,4,11,10,13,8,15,14,1,12,3,2,5)8

556444(1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,0)7

442433(1,2,3,4,5,6,7,0)6

9515825616079(0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15)5

1567866457(0,1,2,4,3,5,6,7)4

7103233(0,1,2,3,4,6,5,7)3

7613002433(7,0,1,2,3,4,5,6)2

11154044(1,0,3,2,5,7,4,6)1

 [6] [7]MOSAIC[6],[7]MOSAIC

Number of Searched 
Nodes  & StepsNumber of Gates

SpecificationCkt #
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Experimental Results (Cnt’d)

-851913521629(13,1,14,0,9,2,15,6,12,8,11,3,4,5,7,10)16

-115311027.629.81Average

-745211921721(6,4,11,0,9,8,12,2,15,5,3,7,10,13,14,1)15
-9712 2401423(9,7,13,10,4,2,14,3,0,12,6,8,15,11,1,5)14
-6781921519(6,2,14,13,3,11,10,7,0,5,8,1,15,12,4,9)13
-3523276(7,5,2,4,6,1,0,3)12
-43875676(4,3,0,2,7,5,6,1)11
-774868(1,2,7,5,6,3,0,4)10
-665678(3,6,2,5,7,1,0,4)9

 [6] [7]MOSAIC [6],[7]MOSAIC

Searched NodesNumber of Gates
Specification
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Experimental Results (Cnt’d)
n All possible 3-input/3-output reversible circuits 

(8!=40320) are synthesized
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3-input/3-output reversible circuits

n Average number of gates per circuit 
n The proposed algorithm: 7.28

n Average number of steps per circuit = 63.87
n It takes about 4 minutes to synthesize all 

circuits 
n 0.006 seconds for each circuit on average
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Different size QMatrices 

61.5031212779521245.3925958163211

17.27206225280105.46133729609

1.65842442280.515577317

0.1730226560.05176245

0.019155404343

02720111

CPU Time
(seconds)

Number of
Gates

Number 
of

Steps
InputsCPU Time

(seconds)
Number of

Gates
Number of

StepsInputs
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Future Directions

n Working on the improvement of the 
resulting synthesized circuit
n By combining the proposed approach and the 

search-based methods 
n By selecting the best possible variable at each 

step
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Conclusions

n A new non-search based synthesis 
algorithm was proposed

n Several examples taken from the literature 
are used

n The proposed approach guarantees a result 
for any arbitrarily complex circuit

n It is much faster than the search-based ones
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Thank you for your attention!


