
1

Moving Forward: A Non-Search Based Synthesis
Method towards Efficient CNOT-Based Quantum
Circuit Synthesis Algorithms

Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi
Email: {msaeedi, szamani, msedighi}@ aut.ac.ir

Quantum Design Automation Lab, Computer Engineering Department
Amirkabir University of Technology

Tehran, Iran

ASPDAC 2008

2

Outline

n Introduction
n Basic Concept
n Previous Work
n Synthesis Algorithm (MOSAIC)
n Experimental Results
n Future Works
n Conclusions

3

Quantum Computing

n The fundamental limits of CMOS
technology

n The enormous amount of required
processing power for future applications

n New computational models
n Quantum computing

4

Synthesis

n Quantum information processing is in the
preliminary state

n No mature synthesis method for quantum
circuit synthesis has been proposed yet

n A systematic algorithm for Boolean
reversible circuit synthesis

5

Boolean Reversible Functions

n n-input, n-output,
n Maps each input assignment to

a unique output assignment
n Example: a 3-input, 3-output

function (0,1,2,7,4,5,6,3)

3
6
5
4
7
2
1
0
F

110111
011011
101101
001001
111110
010010
100100
000000
f2f1f0a2a1a0

AND

6

Power dissipation

n R. Landauer in IBM Journal, 1961
n Every lost bit causes an energy loss
n When a computer erases a bit of information,

the amount of energy dissipated into the
environment is at least kBTln2

n C. Bennett, IBM Journal, 1973
n To avoid power dissipation in a circuit, the

circuit must be built with reversible gates

7

Applications of reversible circuits
n Low power CMOS design

n Reversible 4-bit adder
n “A reversible carry-look-ahead adder using control gates”,

Integration, the VLSI Journal, vol. 33, pp. 89-104, 2002
n 384 transistors with no power rails

n Optical computing
n Quantum computing

n Each unitary quantum gate is intrinsically reversible

8

Basic Concept
n Reversible gate
n Various reversible gates

n CNOT-based gates
n NOT, CNOT, C2NOT (Toffoli), …

n Generalized Toffoli gate
n Positive controls
n Negative controls

9

Matrix representation
n An n-qubit gate has a unitary 2n×2n matrix,

QMatrix, describing its functionality.
n The QMatrix of an n-qubit quantum circuit is

well-formed if it has the following two conditions:
n Matrix elements can only be zeros or ones.
n Each column or row has exactly one element with a

value of 1.
n CNOT-based quantum circuits & Boolean

reversible circuits have well-formed QMatrices

10

Reversible Circuits

High-level
Description

Gate-level
circuits

Physical
Implementation

Synthesis

11

Synthesis Algorithms Categories

n Transformation-based algorithms
n Used to improve the cost of circuit
n Applied on the results of other algorithms
n Usually use templates to optimize a circuit

12

Synthesis Algorithms Categories (Cnt’d)

n Constructive algorithms
n Construct a circuit from a given specification

(i.e. truth table, PPRM expansion, decision
diagrams, …)

n The resulted cost may not be optimized
n The time complexity of the algorithm may be

too high

13

The Proposed Algorithm

n Definition: Lk QTranslation
n The application of a k-qubit gate with matrix G

on a quantum circuit with a QMatrix M
n The result of using an Lk QTranslation is the

same as multiplication of M by G, i.e. MG
n The result of using an Lk QTranslation is also

well-formed

14

The Proposed Algorithm

n Definition: Quantum pair (QPairi,j)
n Two rows form a quantum matrix (QPairi,j) if

the numbers i and j differ in only one bit
position

n Definition: CkQPair
n The 2k rows of a QMatrix the row numbers of

which have the same value on their n-k bit
locations form a single group called CkQPair

15

The Goal of the Algorithm

n The goal of MOSAIC is to decompose a
given QMatrix into several elementary
QMatrices of CNOT-based gates efficiently.
n By generating a set of ordered Lk QTranslation
n When applied to the QMatrix M, generates an

identity matrix I

16

Applying an Lk QTranslation

n Lemma 1 and Lemma 2 explain the results
of using an Lk QTranslation on a given
QMatrix M

17

The MOSAIC Algorithm

Select the cth column of
the given QMatrix

set r to be the c row
number which has a

value of 1

if the rth row is not
marked as visited

if the bth bits of r and c
are not equal

find the number p which
differs with r in its bth bit

18

The MOSAIC Algorithm

set q to be the column
number of row p which

has a value of 1

if q != p and p >= r

exchange the locations
of the pth and rth rows

mark the pth and rth rows
as visited

Repeat the previous
steps for all columns and
all bits until M has been

changed to identity
matrix

19

Example (1)
n c: Brown box
n p: Green box

c= 0 (000)

q=7

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010

p=6 (110)

b=0

r=7 (111)

20

c= 1 (001)

p=1 (001)

Example (2)

n Gray Box: visited rows

r=0 (000)

q=2

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010

21

c= 2 (010)

Example (3)

r=1 (001)

visited

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010

22

p=3 (011)

c= 3 (011)

Example (4)

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010r=0 (010)

q=4

23

c= 4 (100)

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010

Example (5)

r=3 (011)

visited

24

p=5 (101)

c= 5 (101)

Example (6)

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010

r=4 (100)

25

c= 6 (110)

Example (7)

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010

r=5 (101)

visited

26

Example (8)
c= 7 (111)

































00000001
10000000
01000000
00100000
00010000
00001000
00000100
00000010

r=6 (110)

visited

27

Example (After the first step)

































10000000
00000001
00100000
01000000
00001000
00010000
00000010
00000100

Right
locations

28

After the last step (identity matrix)

































10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

29

Gate Extraction

n Each set of row exchanges corresponds to a
gate.

n For example:
n (6 & 7), (0 & 1), (2 & 3) and (4 & 5) swap

operations correspond to a NOT gate applying
on the last (b=0) qubit

n (6 & 7), (2 & 3) swap operations correspond to
a CNOT gate with the second qubit as its
control and the last qubit as its target

30

The Algorithm Convergence

n Theorem 1: The MOSIC algorithm will
converge to a possible implementation after
several steps

31

The Time Complexity

n Assumption: At most h gates are needed
n Search-based method

n n×2n-1 gates must be evaluated to select the best
possible gates at each step

n O(n×2n)h gates should be evaluated
n The MOSAIC algorithm needs O(h×2n)

steps to reach a result

11
1

3
1

21 2)...(2 −−
−− ×=++×+×+ nn

nnnn nCCnCC

32

Experimental Results

2301396444(0,7,6,9,4,11,10,13,8,15,14,1,12,3,2,5)8

556444(1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,0)7

442433(1,2,3,4,5,6,7,0)6

9515825616079(0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15)5

1567866457(0,1,2,4,3,5,6,7)4

7103233(0,1,2,3,4,6,5,7)3

7613002433(7,0,1,2,3,4,5,6)2

11154044(1,0,3,2,5,7,4,6)1

 [6] [7]MOSAIC[6],[7]MOSAIC

Number of Searched
Nodes & StepsNumber of Gates

SpecificationCkt #

33

Experimental Results (Cnt’d)

-851913521629(13,1,14,0,9,2,15,6,12,8,11,3,4,5,7,10)16

-115311027.629.81Average

-745211921721(6,4,11,0,9,8,12,2,15,5,3,7,10,13,14,1)15
-9712 2401423(9,7,13,10,4,2,14,3,0,12,6,8,15,11,1,5)14
-6781921519(6,2,14,13,3,11,10,7,0,5,8,1,15,12,4,9)13
-3523276(7,5,2,4,6,1,0,3)12
-43875676(4,3,0,2,7,5,6,1)11
-774868(1,2,7,5,6,3,0,4)10
-665678(3,6,2,5,7,1,0,4)9

 [6] [7]MOSAIC [6],[7]MOSAIC

Searched NodesNumber of Gates
Specification

34

Experimental Results (Cnt’d)
n All possible 3-input/3-output reversible circuits

(8!=40320) are synthesized

35

3-input/3-output reversible circuits

n Average number of gates per circuit
n The proposed algorithm: 7.28

n Average number of steps per circuit = 63.87
n It takes about 4 minutes to synthesize all

circuits
n 0.006 seconds for each circuit on average

36

Different size QMatrices

61.5031212779521245.3925958163211

17.27206225280105.46133729609

1.65842442280.515577317

0.1730226560.05176245

0.019155404343

02720111

CPU Time
(seconds)

Number of
Gates

Number
of

Steps
InputsCPU Time

(seconds)
Number of

Gates
Number of

StepsInputs

37

Future Directions

n Working on the improvement of the
resulting synthesized circuit
n By combining the proposed approach and the

search-based methods
n By selecting the best possible variable at each

step

38

Conclusions

n A new non-search based synthesis
algorithm was proposed

n Several examples taken from the literature
are used

n The proposed approach guarantees a result
for any arbitrarily complex circuit

n It is much faster than the search-based ones

39

Thank you for your attention!

