Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction

CHEN Quan & WONG Ngai Department of Electrical & Electronic Engineering The University of Hong Kong

Outline

Background
Modeling (Effective Parameters)
Computation (Modified SIE Method)
Results
Conclusion

Surface Roughness in Interconnects

Sources of Surface Roughness

Unintentional sources

 Technology limitations
 Process variations

 Intentional sources

 Electronic deposition

- Chemical etching
- Annealing

Enhance the cohesion between metal and dielectric

Impact of Surface Roughness on Internal Impedance

Interaction between rough surface and current

Current under smooth surface

Current under rough surface

Longer current path More resistive loss Higher resistance

Larger current loop Higher internal inductance

High Frequency Effects

Rough surface effects is insignificant in low frequencies (large skin depth, small roughness)

It becomes significant in high frequencies (comparable skin depth and roughness)

Skin depth = 6.5microns when f = 0.1 GHz (From Intel)

Modeling

Model the impact of random rough surface on interconnect internal impedance

Effective Parameters

- Effective Resistivity ρ_{e} & Effective Permeability μ_{e}
- Capture the increase of resistance and internal inductance caused by surface roughness

Analytical Formulation
• For effective resistivity $\rho_e = \rho \left[1 + \frac{2}{\pi} \tan^{-1} \left(1.4 \frac{h}{\delta} \right)^2 \right]$

h - RMS height; ^δ - skin depth
Widely used in practical design, BUT
Inaccurate (only h is considered)
For effective permeability
Unavailable

Numerical Formulation of pe Smooth surface power loss $P_{s} = \frac{\rho \left| H_{0} \right|^{2} l}{2\delta}$ Rough surface power loss $P_{r} = \frac{\rho H_{0}^{*}}{2} \operatorname{Re}\left\{\int_{\tilde{S}} dz U(z)\right\}$ Power loss equivalence $P_s = P_r$ $\rho_{e} = \frac{2\delta P_{r}}{\left|H_{0}\right|^{2} l} = \frac{\rho\delta}{H_{0}l} \operatorname{Re}\left\{\int_{\tilde{S}} dz U(z)\right\}$

Numerical Formulation of µ Smooth surface magnetic energy $W_{s} = \frac{\mu \delta \left| H_{0} \right|^{2} l}{2}$ Rough surface magnetic energy $W_r = \frac{\mu \delta^2 H_0^*}{2} \operatorname{Im} \left\{ \int_{\tilde{S}} \mathrm{d}z U(z) \right\}$ Magnetic energy equivalence $W_s = W_r$ $\mu_{e} = \frac{2W_{r}}{\delta |H_{0}|^{2} l} = \frac{\mu \delta}{H_{0} l} \operatorname{Im}\left\{ \int_{\tilde{S}} dz U(z) \right\}$

Governing Equation

$$\int_{\tilde{S}} \mathrm{d}z G(z,z') U(z) = \frac{1}{2} H_0 + H_0 \int_{cp} \mathrm{d}z \sqrt{1 + \left(\frac{\partial y(z)}{\partial z}\right)^2} \frac{\partial G(z,z')}{\partial \hat{n}}$$

Green's function $G(z, z') = H_0^{(1)}(k_1 \sqrt{|z-z'|})$

Surface unknown

$$U(z) = \sqrt{1 + \left(\frac{\partial y(z)}{\partial z}\right)^2} \frac{\partial H(z)}{\partial \hat{n}}$$

Boundary condition

 $H(r) = H_0 \quad r \in S$

Modeling of Random Rough Surface

Most rough surfaces in reality are random

• Described by stationary stochastic process with **Probability Density Function** and **Correlation Function** $|\mathbf{P}_1(y)| = \frac{1}{\sqrt{2\pi h}} \exp(-\frac{z^2}{2h^2})$ $C_g(z_1, z_2) = \exp(-\frac{|z_1|}{z_1})$ η --- correlation length

Conventional Statistical Solver -- Monte-Carlo Method

Limitations of Monte-Carlo method

Probabilistic nature Mean value is also a random variable

Slow convergence

 More than 2500
 runs to converge
 within 1%

Computation

Efficient Stochastic Integral Equation (SIE) method

Stochastic Integral Equation (SIE) method

 Use mean value as unknown
 One-pass solution
 Deterministic nature

 Two steps

 Zeroth-order approximation (Uncorrelatedness assumption)
 Second-order correction

Zeroth-Order Approximation Directly applying ensemble average on both sides $\int_{\tilde{S}} dz \left\langle G(z,z')U(z) \right\rangle = \frac{1}{2} H_0 + H_0 \int_{cp} dz \left\langle \sqrt{1 + \left(\frac{\partial y(z)}{\partial z}\right)^2} \frac{\partial G(z,z')}{\partial \hat{n}} \right\rangle$ **Ensemble average** $\langle f(x) \rangle = \int_{-\infty}^{+\infty} P_1(f(x)) f(x)$ Assuming the Green's function G and the surface unknown U are statistically independent (Uncorrelatedness Assumption) $\int_{\tilde{S}} dz \left\langle G(z,z') \right\rangle \left\langle U(z) \right\rangle = \frac{1}{2} H_0 + H_0 \int_{cp} dz \left\langle \sqrt{1 + \left(\frac{\partial y(z)}{\partial z}\right)^2} \frac{\partial G(z,z')}{\partial \tilde{n}} \right\rangle$ New unknown

Carcely-order Approximation
Matrix equation format
$$\begin{cases}
U(z) \\
\zeta(z,z') \\$$

Primitive Second-Order Correction Improve the accuracy of the mean V $\overline{V} = \overline{V}^{(0)} + \overline{V}^{(2)}$ Second-order **Zeroth-order** correction term approximation term $V^{(2)} = trace(\overline{A}^{-T}D)$ $\operatorname{vec}(D) = \left\langle (A - \overline{A}) \otimes (A - \overline{A})^T \right\rangle (\overline{U}^{(0)} \otimes \overline{U}^{(0)})$

Limit: Also time-consuming

 $F_{N^2 \times N^2}$

Computational Bottleneck
 High dimensional infinite integration in *F*

4-D infinite integration

$$P F_{nm}^{ik} = \left\langle A_{ik} A_{mn} \right\rangle - \overline{A}_{ik} \overline{A}_{mn}$$

 $\langle A_{ik}A_{mn} \rangle = \iiint dy_i dy_k dy_m dy_n P_4(y_i, y_k, y_m, y_n) G(y_i, y_k) G(y_m, y_n)$ • Standard technique: Gauss Hermite quadrature - Complexity grows exponentially with the integral dimension (Curse of dimensionality) 1 - dimension $\rightarrow O(N)$ 4 - dimension $\rightarrow O(N^4)$

No. of Points for Gauss Hermite Quadrature

Improved Formulation of SIE (2D case) **Translation invariance of Green's function** $G(y_i, y_k) = G(y_i, y_i + y_d) = G(0, y_d)$ **Thus** $G(y_i, y_i) = \hat{G}(y_d)$ $\overline{A}_{ik} = \langle G(y_i, y_k) \rangle = \iint dy_i dy_k P_2(y_i, y_k) G(y_i, y_k)$ (2D) $\langle \overline{A}_{ik} = \langle \hat{G}(y_d) \rangle = \int dy_d P_{1d}(y_d) \hat{G}(y_d)$ (1D) P_{1d} – Probability density function of y_d

Partial Probability Density Function

$$P_{2}(y_{i}, y_{k}) = \frac{1}{2\pi h^{2} \sqrt{1-c^{2}}} \exp\left(-\frac{y_{i}^{2} - 2cy_{i}y_{k} + y_{k}^{2}}{2h^{2}(1-c^{2})}\right)$$

$$\tilde{P}_{2}(y_{i}, y_{d}) = \frac{1}{2\pi h^{2} \sqrt{1-c^{2}}} \exp\left(-\frac{y_{i}^{2} - 2cy_{i}(y_{i} + y_{d}) + (y_{i} + y_{d})^{2}}{2h^{2}(1-c^{2})}\right)$$

$$P_{1d}(y_{d}) = \int dy_{i}\tilde{P}_{2}(y_{i}, y_{i} + y_{d})$$

$$= \frac{1}{2h\sqrt{\pi(1-c)}} \exp\left(\frac{-y_{d}^{2}}{4h^{2}(1-c)}\right)$$

Improved Formulation of SIE (4D case) $\left\langle A_{ik}A_{mn}\right\rangle = \iiint dy_i dy_k dy_m dy_n P_4(y_i, y_k, y_m, y_n) G(y_i, y_k) G(y_m, y_n)$ $y_{d_1} = y_k - y_i \qquad y_{d_2} = y_n - y_m$ Let $\langle A_{ik}A_{mn}\rangle = \iint dy_{d_1}dy_{d_1}P_{2d}(y_{d_1}, y_{d_2})\hat{G}(y_{d_1})\hat{G}(y_{d_2})$ Where $P_{2d}(y_{d_1}, y_{d_2}) = \int dy_{d_1} dy_{d_2} P_4(y_i, y_i + y_{d_1}, y_m, y_m + y_{d_2})$

Results

Numerical vs Analytical Formulation (Different Correlation Length)

Gaussian surface ($\sigma = 1 \mu m$)

SIE vs MIE (Mean µ_e Ratio)

Gaussian surface (σ = 1µm)

CPU Time Comparison (Unit: second)

Method	h / δ = 1	h / δ = 2	
MIE (1500run)	7160.3	14484.7	
SIE (Original)	6367.3	6544.7	
SIE (Modified)	198.7	200.3	

(Gaussian rough surface --- $\sigma = 1 \mu m$, $\eta = 1 \mu m$)

Conclusion

An efficient numerical approach for modeling the impact of surface roughness on interconnect internal impedance

Conclusion

Numerical effective parameters

 Model the rough surface effects on internal impedance
 Take all statistical information into account

Modified SIE method

 One-pass solution for mean values
 Halve infinite integral dimension by partial PDF formulation

Thank you!