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Background
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Silicon Debug for Single Core

Run Control Interface (e.g., JTAG)
Widely used in practice
Not enough for tricky bugs
Not applicable for certain real-time applications

Trace + Trigger
Effective in most cases

Challenging yet Well Studied Problem!
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Multi-Core Debug - Requirements
Concurrent debug access to interacting 
cores and their transactions

System-level triggering and trace

Debug event synchronization for cores from 
multiple clock domains

Limited DfD cost in terms of silicon area, 
routing and device pins.
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Multi-Core Debug Architecture -
ARM CoreSight
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Multi-Core Debug Architecture –
First Silicon
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Network-on-Chip
Most promising communication 
scheme for future giga-scale 
SoCs

NoC generally contains:
Network interface
Router
Physical link

Need debug support as a new 
design paradigm
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NoC Monitoring Service

Ciordas et al. TODAES’05, IES’06
Monitoring probe attached at routers
Effective identifying bit-level errors
Costly in terms of NoC bandwidth at transaction 
level
Monitor instead of Debug
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Multi-Core Debug Platform 
for NoC-Based Systems
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Rationale

How to achieve concurrent debug access?
Reuse NoC to transfer debug data
Insert debug probe between core and NI

How to monitor inter-core transactions in 
NoC-based systems

Not shared mechanism – cannot simply listen 

How to deal with the latency problem?
Use QoS guaranteed service for debug connections
Two-pass debug strategy
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Proposed Platform

On-Chip Debug Architecture
Off-Chip Debug Controller
Supporting Debug Software
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On-Chip Debug Architecture

Core-Level Debug Probe
Between core and NI
Monitor transactions
Control/observe core’s debug interface

System-level Debug Agent
JTAG (+ trace port) 
Controlled by off-chip debug controller
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Debug Probe Design
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Trigger & Trace Unit Design
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Debug Agent
TAP controlled by off-chip debug controller
Build debug connections between DA and DPs
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Control On-Chip Debug Registers 
through DA



17

Supporting Debug Software

Provide GUI or command line interface

3-layer architecture: 
Cross debugger
Core debugger and Transaction debugger
Multi-core debug driver (PC interfaces)
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Off-Chip Debug Controller
Translation layer between debuggers and on-chip 
debug architecture

Schedule debug commands/data transfer

All debug resources in DPs and CUDs are mapped 
into addressable registers
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Debug Access Delay
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Experimental Results
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A Multi-Core Debug Example
DP detects a transaction trigger and stop three 
interacting cores
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Simulation Environment
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Simulation Results – Multi-core 
Concurrent Debug

setting DP1's delay counter

setting DP2's delay counter

setting DP3's delay counter DP2 received ‘write’ operation

DP2 received ‘write’ operation

setting 3 CUDs’ debug registers at the same time

pre-calculated delay value
delay counter counting down

debug access on chip-level debug port

NoC link delay

DP1 received ‘write’ operation

Pre-calculated delay can be inserted
Multiple cores can be concurrently debugged
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Simulation Results – Transaction 
Trace

Configurable trigger and trace conditions
Transactions are recorded when trigger 
event happens
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DfD Area Cost – Debug Probe
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Future Work

Verify the proposed debug platform in-field

Introduce DfD units inside NoC to locate 
the exact NoC error

NoC without QoS connections for debug?

…
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Conclusion
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Q & A


