
1

A Debug Probe for Concurrently Debugging 
Multiple Embedded Cores and Inter-Core 

Transactions in NoC-Based Systems

Shan Tang and Qiang Xu
EDA&Testing Laboratory



2

Background



3

Silicon Debug for Single Core

Run Control Interface (e.g., JTAG)
Widely used in practice
Not enough for tricky bugs
Not applicable for certain real-time applications

Trace + Trigger
Effective in most cases

Challenging yet Well Studied Problem!



4

Multi-Core Debug - Requirements
Concurrent debug access to interacting 
cores and their transactions

System-level triggering and trace

Debug event synchronization for cores from 
multiple clock domains

Limited DfD cost in terms of silicon area, 
routing and device pins.



5

Multi-Core Debug Architecture -
ARM CoreSight

C
ro

ss
-tr

ig
ge

r 
In

te
rfa

ce
 (C

TI
)

D
eb

ug
 A

cc
es

s 
P

or
t (

D
A

P
)

C
ro

ss
-tr

ig
ge

r 
In

te
rfa

ce
 (C

TI
)



6

Multi-Core Debug Architecture –
First Silicon



7

Network-on-Chip
Most promising communication 
scheme for future giga-scale 
SoCs

NoC generally contains:
Network interface
Router
Physical link

Need debug support as a new 
design paradigm

R
R

R
R

NI

µP

R

NI

DSP

R

NI

Logic 
core

link



8

NoC Monitoring Service

Ciordas et al. TODAES’05, IES’06
Monitoring probe attached at routers
Effective identifying bit-level errors
Costly in terms of NoC bandwidth at transaction 
level
Monitor instead of Debug



9

Multi-Core Debug Platform 
for NoC-Based Systems



10

Rationale

How to achieve concurrent debug access?
Reuse NoC to transfer debug data
Insert debug probe between core and NI

How to monitor inter-core transactions in 
NoC-based systems

Not shared mechanism – cannot simply listen 

How to deal with the latency problem?
Use QoS guaranteed service for debug connections
Two-pass debug strategy



11

Proposed Platform

On-Chip Debug Architecture
Off-Chip Debug Controller
Supporting Debug Software

C
U

D

O
C

P

C
U

D

O
C

P

JT
AG

Tr
ac

e

JT
AG



12

On-Chip Debug Architecture

Core-Level Debug Probe
Between core and NI
Monitor transactions
Control/observe core’s debug interface

System-level Debug Agent
JTAG (+ trace port) 
Controlled by off-chip debug controller



13

Debug Probe Design

Trigger & Trace

Transaction Trace Buffer

OCP 
Slave IF

JTAG
Control

Core Trace Buffer

NIOCP

JTAG
(Debug port)

Core
Trace

OCP 
Slave IF

Delay 
Control

OCP

Transaction Trace Module

Debug Access Module

Core Debug Module

Core Trace Module

NoC

CUD

NI

Debug
Connection

Trace
Connection

Trace Port



14

Trigger & Trace Unit Design

Detector 1

Detector n

Detector 2
M
U
X

Shadow
BufferTrigger

signals

Register W/R interface

OCP

Buffer 
Write

Buffer
fullTrigger Control

Records
Generation

Trigger Unit Trace Unit



15

Debug Agent
TAP controlled by off-chip debug controller
Build debug connections between DA and DPs

NI

NI

OCP

OCP OCP 
Master INF

OCP 
Master INF

Debug
Control

Reg

Trace
Control

TAP Chip
JTAG

Chip
Trace
Port



16

Control On-Chip Debug Registers 
through DA



17

Supporting Debug Software

Provide GUI or command line interface

3-layer architecture: 
Cross debugger
Core debugger and Transaction debugger
Multi-core debug driver (PC interfaces)



18

Off-Chip Debug Controller
Translation layer between debuggers and on-chip 
debug architecture

Schedule debug commands/data transfer

All debug resources in DPs and CUDs are mapped 
into addressable registers



19

Debug Access Delay

O
C

P
 S

la
ve

D
eb

ug
 C

on
tro

l

JT
A

G



20

Experimental Results



21

A Multi-Core Debug Example
DP detects a transaction trigger and stop three 
interacting cores



22

Simulation Environment



23

Simulation Results – Multi-core 
Concurrent Debug

setting DP1's delay counter

setting DP2's delay counter

setting DP3's delay counter DP2 received ‘write’ operation

DP2 received ‘write’ operation

setting 3 CUDs’ debug registers at the same time

pre-calculated delay value
delay counter counting down

debug access on chip-level debug port

NoC link delay

DP1 received ‘write’ operation

Pre-calculated delay can be inserted
Multiple cores can be concurrently debugged



24

Simulation Results – Transaction 
Trace

Configurable trigger and trace conditions
Transactions are recorded when trigger 
event happens



25

DfD Area Cost – Debug Probe



26

Future Work

Verify the proposed debug platform in-field

Introduce DfD units inside NoC to locate 
the exact NoC error

NoC without QoS connections for debug?

…



27

Conclusion



28

Q & A


