# Design Rule Optimization of Regular layout for Leakage Reduction in Nanoscale Design

Anupama R. Subramaniam, Ritu Singhal, Chi-Chao Wang, Yu Cao Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287 USA

## Lithography Trend and Yield Constraints

#### □ Yield issues due to device scaling:

- Yield will be limited by physical dimension instead of traditional particle defects.
- Device will be distorted due to <u>Lithography limitations</u>, Mask misalignment, Etching, Oxide growth, System defects and Random effects.
- □ Lithography limits:
  - When Critical Dimension (CD) is getting smaller than optical wave length.
  - Functional yield (defects) :
    - Shorts for dense feature
    - Opens for isolated features.
  - Parametric yield (process variation):
    - Edge placement error for CD.
    - Power and Performance impact.



#### Post Lithography Gate Shape

- Post Litho Non Rectilinear Gate (NRG) Impact:
  - Shortening of poly line end can cause device failure.
  - Sub-threshold leakage may increase by more than ~15x compared to ideal layout.
  - Overall yield impact.





litho NRG Model.

01/23/2008

ASPDAC 2008

### Regular Layout

- □ Follows the concept of single pitch and single orientation.
- Restrictive Design Rule (RDR) was proposed to effectively enhance yield and minimize the process variation.
- Minimize variation in gate length due to distortion caused by lithography.
- □ Why do we need Regular Layout Optimization and RDR Prediction:
  - As the interaction between Layout and Leakage becomes more pronounced, there is a growing demand to predict and optimize the Regular Layout under RDR for low power designs.





#### Lithography Basics:

□ Projection Lithography Basics:





n – Refractive Index f – Focal Distance D – Lens Diameter NA – Numerical Aperture  $\theta_{max}$  – Max Focus angle  $\lambda$  – Optical Wave Length

#### □ Resolution: Diffraction Limited.

- In a smaller feature size,
  - $\rightarrow$  Larger Diffraction.
  - → Fewer diffraction order can be captured
    → Loss of image details.



- $\square$  k1 : Process dependent adjustment factor
  - Practical lower limit  $k1 \sim = 0.25$
  - K1 can be determined by resist capability, tool control, reticle pattern adjustment and other process control.

01/23/2008

ASPDAC 2008

#### Defocus

- □ Defocus Tolerance: Depth Of Focus (DOF):
  - Range of Focus for which the resist profile remains within specs.

$$DOF \approx \pm k2 \frac{\lambda}{NA^2} \approx \pm k2 \frac{CD^2}{k1^2 \lambda}$$

- DOF can't be too low because the low image definition and contrast can alter CD and limit exposure latitude.
- Variation in surface height of processed wafer must be less than the optical DOF.
- There is a negative effect between DOF and Resolution. That means the better the resolution, the worse the DOF.



#### Resolution Enhancement Techniques (RET)

- □ Litho process window is defined by adjusting R and DOF along with other process specific parameters.
- □ RET: Resolution Enhancement Techniques.
  - Amplitude, Direction, Phase and Wavelength of optical system can be controlled to improve Resolution.
  - RET Benefits:
    - **Better Resolution**.
  - RET Limits:
    - □ High Mask Cost.
    - □ Huge Turnaround Time for yield verification due to large data volume.
    - **Requires the Layout to follow the concept of Single pitch and single orientation.**
    - □ Impact on Layout Rule / Design Restriction.

#### RET approaches:

- □ Optical Proximity Correction (OPC).
- □ Phase Shift Mask (PSM) attenuated PSM / alternating PSM.
- □ Off Axis Illumination (OAI).
  - Allows some of the higher order diffracted light to be captured and hence can improve resolution (by decreasing k<sub>1</sub>).
  - Amplifies certain pitch at the cost of others.
- □ Sub Resolution Assist Feature (SRAF).
  - Dummy poly feature are placed in between two poly gates where the poly pitch is greater than the optimal pitch for OAI.

#### Regular Layout Optimization under RDR

- □ Critical Design Rules impact to CD:
  - 1<sup>st</sup> order effect to PS and PDC-S.
  - 2<sup>nd</sup> order effect to PEX, W, CW, AEX etc..



Post litho aerial image super imposed on top of ideal layout illustrating critical design rule index used for optimization.

#### Critical design rule index

| Design Rule (nm)                | Rule Index                     |
|---------------------------------|--------------------------------|
| Poly Pitch                      | РР                             |
| Poly Gate Length                | L=(LW)                         |
| Poly Gate Width                 | W                              |
| Poly Space                      | PS=(LS)                        |
| Contact Width                   | CW                             |
| Poly End Cap                    | PEX                            |
| Poly to Diffusion Contact Space | PDC-S                          |
| Active Extension                | AEX                            |
| Active Width Nmos               | W <sub>d</sub> =W <sub>n</sub> |
| Active Width Pmos               | W <sub>d</sub> =W <sub>p</sub> |

#### Validation suite for Regular Layout Optimization

- □ Calibre Post Lithography Aerial Image □ Simulation for NRG:
  - λ=157nm; NA=0.95; n=1.437;
  - OAI along with SRAF are added into consideration.
  - Post lithography aerial image simulation model combined with NRG leakage model is suitable for leakage analysis for Regular layout optimization using RDR.
- □ Benchmark Circuits:
  - NAND gate, XOR gate and 1bit full adder.

Regulate Layout:

• We follow the concept of single pitch and single orientation to alleviate the leakage induced by NRG effect.



Normalized PDF of post litho, post etch effective channel length (Etch effect  $\sim = 30$ nm). Leff = CD – etch effect

#### Priority of Optimization for Layout Parameters



CDmin sensitivity to poly space (PS), poly end extension (PEX) and gate length ( L).

- Poly space (PS) has 1<sup>st</sup> order impact on CD and in turn leakage energy.
  - Optimized for leakage
- Poly end extension (PEX) has 2<sup>nd</sup> order impact on CD.
  - Critical for circuit operation.
  - Optimized for manufacturability.
  - PEX ~= 1.5L (considering process variation)
- □ L process window is in the range of 60nm to 75nm depending on design requirement.
- □ Cdmin is affected profoundly by PS.

#### Post Litho Effective Poly Width



Post litho effective poly width (Weff) with respect to PS optimization.

- □ W<sub>eff</sub> has marginal impact with respect to PS.
- Poly width (W) can be optimized for better manufacturability.
  - W= Wd + 2PEX. where Wd - diffusion width.

#### Finding optimal Poly Space for Regular Layout



Finding optimal poly space (PS) considering leakage energy (Eoff) and area trade off.

- □ Leakage energy (Eoff) is sensitive to CD min obtained from aerial image simulation, and PS has a strong connection with CD.
- Thus, once we have the optimal PS, Eoff impact and area penalty can also be optimized.
- <u>Compared to un-optimized regular</u> layout for benchmark circuits, 73% reduction Eoff with 10% area penalty can be achieved in our optimal simulation.

#### Active Energy and Delay Impact due to RDR



Impact of active energy (Eactive) and speed (Tpd) due to PS optimization.

- □ There is a marginal impact on the cell delay and active power.
- □ Circuit speed (Tpd) has ~12.5% slow down compared to un-optimized regular design.
- $\Box \qquad \text{On the other hand, active energy} \\ (Eactive) can be improved by ~12\%.$

#### Effect of Defocus



□ Variation in Lmin due to defocus : +6.8nm to -7.7nm

- Positive defocus range : reduce leakage and slow down the circuit speed due to Lmin increase
- Negative defocus range : increase the leakage as well as speed and could cause fatal failure due heavy leakage caused by reduction in Lmin

#### Optimized RDR parameters for Regular Layout

| Optimized RDR<br>Parameter | Optimized<br>Value (nm) |
|----------------------------|-------------------------|
| РР                         | 162.5                   |
| PS                         | 97.5                    |
| PDC-S                      | 87.5                    |
| CW                         | 85                      |
| PEX                        | 97.5                    |
| W                          | 455                     |
| L                          | 65                      |
| AEX                        | 172.5                   |

Drawn Poly Gate Post Litho Poly Gate Drawn Diffusion SRAF Post Litho Diffusion W PEX CW W(p,n) PDC-S PSWDC I PS AEX I. 1 1 PP

- $\Box \qquad PP = L + PS = LW + LS$
- $\square \qquad PDC-S = [(2 PS) + L CW]/2$
- $\square \qquad PSWDC = CW + (2PDC-S)$
- $\Box \qquad AEX = CW + PDC S + X$ 
  - X Active overlap of contact. X can be eliminated considering 1<sup>st</sup> order approximation.

#### Comparative Analysis of Benchmark Layouts

| Layout Design Style              | T <sub>pd</sub> (ps) | E <sub>active</sub> (fJ) | Area (um2) | E <sub>off</sub> (fJ) |
|----------------------------------|----------------------|--------------------------|------------|-----------------------|
| NAND                             |                      |                          |            |                       |
| Typical Regular                  | 33.58                | 1.316                    | 1.187      | 0.0228                |
| Optimized Regular                | 37.66                | 1.536                    | 1.231      | 0.0146                |
| Optimized vs Typical Regular (%) | 12.15                | 16.72                    | 3.71       | -36.12                |
| XOR                              |                      |                          |            |                       |
| Typical Regular                  | 90.82                | 7.53                     | 4.260      | 52.63                 |
| Optimized Regular                | 97.56                | 7.21                     | 4.612      | 13.97                 |
| Optimized vs Typical Regular (%) | 7.42                 | -4.20                    | 8.26       | -73.46                |
| One bit full Adder               |                      |                          |            |                       |
| Typical Regular                  | 104.00               | 19.56                    | 9.341      | 184.5                 |
| Optimized Regular                | 117.00               | 17.25                    | 10.173     | 50.15                 |
| Optimized vs Typical Regular (%) | 12.50                | -11.81                   | 8.91       | -72.82                |

## Conclusion

- □ With optimized regular layout,  $E_{off}$  (off-state power consumption) due to NRG is reduced by ~73% for PS=97.5nm with area penalty of ~9% on the benchmark standard cells.
- □ Marginal impact on Eactive and Tpd of ~5% to 12.5% for 1bit full adder in 65nm process technology.
- Proposed RDR prediction method and regular layout optimization technique can be efficiently applied during design phase of product cycle to help reduce energy consumption and improve product yield.

## Thank You !

Questions? Comments Concerns

# Backups

#### **CD** Variation Estimation



#### **Problem Description**

# □ Yield: Percentage of Manufactured chip that meet product specification

(ie. power, performance and area specs)

- □ Litho illumination Impact:
  - Edge Placement Error for Critical Dimension (CD):

EPE ( $\Delta$ CD) = drawn layout mask CD – printed CD in wafer

- → Results in parametric yield (process variation).
- □ -ve EPE (poly gate)  $\rightarrow$  Leakage impact.
- $\square +ve EPE (poly gate) \rightarrow Performance impact.$



#### Source: IBM and Intel

### Photolithography-OPC

- Optical Proximity Correction (OPC) can be used to compensate somewhat for diffraction effects.
- □ Sharp features are lost because higher spatial frequencies are lost due to diffraction. These effects can be calculated and can be compensated for. This improves the resolution by decreasing k<sub>1</sub>.



#### Photolithography-OAI

- OAI systems focus the light at the entrance pupil of the objective lens. This "captures" diffracted light equally well from all positions on the mask.
- □ This method improves the resolution by bringing  $k_1$  down.
- "Off-axis illumination" also allows some of the higher order diffracted light to be captured and hence can improve resolution (by decreasing k1).



### Photolithography-Phase Shift Masks

- Extends resolution capability of current optical lithography
- Takes advantage of the wave nature of light
- PSM changes the phase of light by 180° in adjacent patterns leading to destructive interference rather than constructive interference
- Improves MTF of aerial image on wafer. Making  $k_1$  smaller.
- allow sharper resist images and/or smaller feature sizes for a given exposure system.



Phase-Shift Mask (PSM)

## Aerial Image Simulation Model

- □ Post Lithography Aerial Image Simulation:
  - Calibre workbench used for post litho aerial image simulation.
    - □ Model based OPC.
    - **TCCALC** engine with scalar diffraction model.
  - Technology node 65nm;
  - Illumination wavelength  $\lambda$ =157nm;
  - Numerical aperture NA=0.95 (maximum theoretical limit);
  - Refractive index n=1.437;
  - Due to regular layout style, OAI combined with SRAF is added benefit.
  - Resist thickness ~=125nm assumed (ITRS requirement < 225nm.
  - CD calculated at 30% of maximum image intensity

## NRG Leakage Simulation Model

#### □ Leakage Simulation using NRG model:

- PTM 65nm technology model with Leff in place of gate length in spice simulation.
  - □ Verilog-A model for transistors used in integrating NRG Leff model with spice simulator.
- NRG leakage mode requires the PDF of Leff obtained from post litho simulation to have Gaussian distribution.

 $L_e^{\min} = L_{\min} + \ln(\sigma W / Wc)$  Wc = ~5nm from post litho aerial image simulation

 $L_e^{\min}$  Fuction of Lmin and sigma of all lengths that form the gate section. Leakage has exponential dependence on this parameter

$$L_e^{\max} = \mu - \ln(\sigma)$$

 $L_e^{\text{max}}$  Fuction of mean gate length and sigma

$$L_{eff} = L_e^{\min} + \frac{\Delta L \sqrt{\alpha} Vgs}{\sqrt{\alpha} (Vgs)^2 + 1}$$

 $\Delta L = L_e^{\max} - L_e^{\min}$  Fitting parameter

 Post lithography aerial image simulation model combined with NRG leakage model is suitable for Regular layout optimization using RDR for leakage.

### Preliminary Results (contd...)

## Critical design rule index and parameter range used for layout optimization.

| Design Rule (nm)                   | Rule Index                     | Minimum<br>value | Maximum<br>value |
|------------------------------------|--------------------------------|------------------|------------------|
| Poly Pitch                         | РР                             | 130              | 200              |
| Poly Gate Length                   | L=(LW)                         | 60               | 85               |
| Poly Gate Width                    | W                              | 325              | 650              |
| Poly Space                         | PS=(LS)                        | 65               | 195              |
| Contact Width                      | CW                             | 65               | 85               |
| Poly End Cap                       | PEX                            | 33               | 180              |
| Poly to Diffusion<br>Contact Space | PDC-S                          | 60               | 130              |
| Active Extension                   | AEX                            | 65               | 260              |
| Active Width Nmos                  | W <sub>d</sub> =W <sub>n</sub> | 130              | 195              |
| Active Width Pmos                  | W <sub>d</sub> =W <sub>p</sub> | 195              | 260              |

## Final optimized parameters for regular layout vs typical regular layout.

| Optimized Layout<br>Parameter | Typical value<br>(nm) | Optimized<br>Value (nm) |
|-------------------------------|-----------------------|-------------------------|
| РР                            | 146                   | 162.5                   |
| PS                            | 81                    | 97.5                    |
| PDC-S                         | 71                    | 87.5                    |
| CW                            | 80                    | 85                      |
| PEX                           | 65                    | 97.5                    |
| W                             | 455                   | 455                     |
| L                             | 65                    | 65                      |
| AEX                           | 151                   | 172.5                   |