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Clock Distribution Networks

Uniform (H-Tree) I__I ] ]__I
1 F

— Moderate power consumption

— Fairly robust
— Sinks are not usually uniform l—

Balanced Tree [Tsay ICCAD‘91, Chao et al.
DAC‘92, Boese et al ASIC‘92]

— Minimum wire length
— Sensitive to process parameters
Spines [Tam et al ISSCC’06]
— Used by Intel (P6, Xeon MP)
— Variations within and between spines still exists
Grids [Anderson et al ISSCC’06, Golden et al
ISSCC'06] f%
— Used by IBM (Power4) and AMD (Hammer)
— Low variation, but huge power overhead




Types of Variation

Inter-die Intra-die

AN

S -

Lot-to-lot Wafer-to-wafer Die-to-die  Within die

Environmental (temperature, voltage, etc.)
Physical (lithography, materials, etc.)
Fatigue (NBTI, metal migration, etc.)




Variation Source Assumptions

W

W =175nm+32nm

o S =175nmzx32nm

Corr. L= 93nm=16.7% Corr.  H =280nm%15%

o Vi 0.232£30% T = 280nm=10%
naep. Vin=-0.273£30% 0 = 2.2e-8+30%




Improving Robustness

Variation is a major concern
in clock distribution

Current Options

— Corner-based optimization

* Process-Voltage-Temp
(PVT)

« Risky, Pessimistic, etc.
— Direct statistical
optimization
« Many simplifications or
expensive to compute
Can heuristics still help
clock tree optimization?

50%  99.8%




Expected Skew of “Zero Skew” Trees

500
450
400
—. 350
& 300
= 250
2 200
® 150
100

90 -

0

Increasing number of buffers+wires

1911.1
3711 | ||
2018 175.8 i
113.7 a
741 g4 |
18.3 33.9 229 | : | |
1 I_II .
9 @ 5 T 4 8§ ¥ @ ¢ ¢
< o (o 0]
™— (g (]
(7)) (7))
(/)]
>




Skew Calculation

Elmore delay is not accurate,
but high fidelity.

Fast for optimization.
S2M for slew calculation.

Operations Required

— Add/Subtract

— Mult

—  Maximum/Minimum
Delay(s,3)=0.69*(R1(C1+C2+
C3+C4+C5)+
R2(C2+C3+C5)+R3C3)
Skew

— Maximum Difference (global
skew)

— Maximum Path-Connected
Difference (local skew)

[Elmore, J. App. Physics 1948]
[Agarwal et al., TCAD 2004] -




Parameterized Form

Nominal Correlated Independent

d = do + Z d; X; + d. X, /\
P SenS|t|V|ty '\\ Gaussian

Random

Variables
N(M,G) = N(O,l)




Parametric Operations

 Addition and Subtraction
— Add/Sub the means
— Correlated: Add/sub std. dev.
— Independent: Root-sum-square std. dev.

« Multiplication
— Many non-linear cross terms
— Showed that approximating cross-terms as random variation
works well
« Maximum and Minimum

— First and second moments calculated analytically [Clark
1961,Cain 1994]

— Sensitivities approximated by proportional weight
[Visweswariah et al., DAC 2004]




* First bottom-up

- Top-down propagate

Top-Down Statistical Analysis

- Parameterized R, C, D =D 4+ R (Cix
and D values. "2

propagate total sub-tree
capacitances, C,

parameterized delays,
Di

» Skew is Max(D, -D)) for
sinks i and |

+C))
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Clock Tree Tuning

Start with DME + Buffered tree
“In Place” Optimization

Select Buffer Sizes and Wire Widths to Minimize Skew while
Increasing Robustness

Buffer/Wire Sizes

— Two stage buffer with fixed internal gain

— Continuous range of buffer output sizes

— Continuous range of wire widths

— Minimum and maximum limits for both sizes

Size wire segment M2
to change wire
resistance and
capacitance

) A

Size buffer to change load

and drive strength
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Sequential LP for Clock Skew

Minimum Skew Objective MIN  Syaz — Smin
s.t. S$; — Smin > 0,V7 € Sinks
Smaz — Si = 0,Vi € Sinks
Linear Delay Constraints D+GA=S

Simple Bounds max(L;, x; —€;) < z; + 6; < min(U;, x; + €;)

Similar to Wang and Marek-Sadowska, DAC 2004, but for skew

rather than power minimization.
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Linear Delay Constraints
Buffer/Wire Size Changes

Ods /

od
S3 — 3 —AZE 3Ay—|—

od;
8CUj

/‘/'

a:J—I—e
€

Perturb & Difference can
be used with any
analysis

More buffers provides
better incremental
analysis

Traversed
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Sequential Quadratic Formulation

_ Useful Skew
Weight

We are NOT /
approximating skew or 5
cgﬁstraints w?th a D(S)= ) w;(s; +b; —5;)
second-order function i> j

— Indirect optimization

— Convex cost function Sink Delays
Minimize total energy v

— Force =k™x
_ Energy — kK*x*X (‘\

[Guthaus et al., DAC 20006.]
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Additional Constraints

« Power Bound

— Dominated by dynamic power so capacitance rather than
true power is bounded

— Constraint ensures total size changes are still below power

limit
Z P(zr+ Azx) < Phaq
x€{Gates,Wires}

- Simple Bounds

— Linearity of sink delay is only valid in a small range so we
restrict the size changes by epsilon

— Technology places hard upper/lower limits on buffer and
wire sizes

maX(Li, Ly — Gz‘) < x; 57, < min(Uz’axi 6;)
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R1 Linear vs Quadratic “Push Out”

45 . ; 0.3
SQP Deterministic m—
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[Guthaus et al., DAC 20006.]
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SLP vs. SQP Skew (50% Cap. Increase)

G4

A

€4

ré

068G1S

cd

L

OMean ESigma m99.80%

mmr

Ld

8.EGS

gcris

OO O O O O O O
O IO < MO AN -

(%) d1S 4910 jJuswanoiduwj

17




Why preserve sensitivities?

Sensitivities attribute
variability to a particular
source

Underlying sources of
variation are defined as
“correlated”

Correlated sensitivities can
“cancel out” whereas
independent sensitivities
accumulate as root-sum-of-
squares

/\ Correlated

N(w, - u,,0,-0,)

Ndependent

N(Mi - Mza\/glz + O’%)
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Correlation Definitions

Defines tendency for events
to track

Formalized with the Pearson
correlation coefficient

cov(X,Y)
OxX0Oy

PX)Y =

Can also be defined
geometrically as cosine of
angle between two event

vectors
XY
cos (0) = X[V

Y events

Y events

X events
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Geometric Interpretation of Correlation

Parameterized form is

already centered N
Sensitivity coefficients are *é It
linear o
©
Define the sensitivity vector, o
R: k
>
A=ap+ E a; X; Parameter 1
1=1
= R'X
= ag + R: - R.
¢ J
cos(0) =

- |Ri||R
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Heuristic for Increasing Correlation

- Include Nominal as a 4 (041 — 75.0)°
parameter >

- Angle is approximately =
proportional to distance ‘g
squared 2

- Maximizing correlation,

cos(theta), is same as Parameter 1 Sensitivity
minimizing angle

- SQP can be used for ,
squared objectives O(S)= ) |85

k 21




Improvement of s1423
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Infeasible Improvement

- Sometimes improvement is infeasible
— Wire assignment is fixed
— Contradiction of forces can result in zero improvement

— Mutually exclusive sensitivities can result in zero
improvement

* No improvement for other benchmarks

— Same results as deterministic SQP heuristic
— But still better than SLP

« Does this mean the idea is bad? No.

— Consider local, not global, skew with data-path sensitivities.
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Timing Constraints Revisited
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Beyond Useful Skew: Useful Variation

Cancellation T
and clock f
skew variation > ‘}Doi}
makes the
design more Improve
*— Correlation

—~> 'TCZ
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Improvement over Det. SQP

Deterministic SQP vs. Statistical SQP
OMean ESigma m99.80%
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Run-Time Costs

Up to 50x the run-time due to naive gradient
computation

Evaluation of 12 random variables
Performed all optimization using new method

Can be used for “fine tuning” after deterministic
optimization instead
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Conclusions

New technique for improved correlation

— Uses distance between canonical vector delay
representations

— Matches nominal delay
— Matches first order sensitivities
— Minimizes uncorrelated sensitivity

Data-path variation awareness
Average of 16.3% better expected skew
Average of 11.9% improved mean + 3-sigma
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