Clock Tree Synthesis with Data-Path Sensitivity Matching

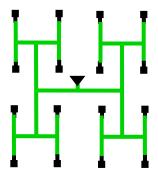
Prof. Matthew R. Guthaus, UC Santa Cruz Prof. Dennis Sylvester, University of Michigan Prof. Richard B. Brown, University of Utah

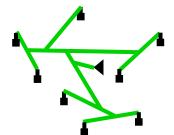
JACK BASKIN SCHOOL OF ENGINEERING

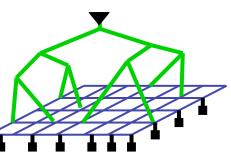
BIOTECHNOLOGY, INFORMATION TECHNOLOGY, NANOTECHNOLOGY

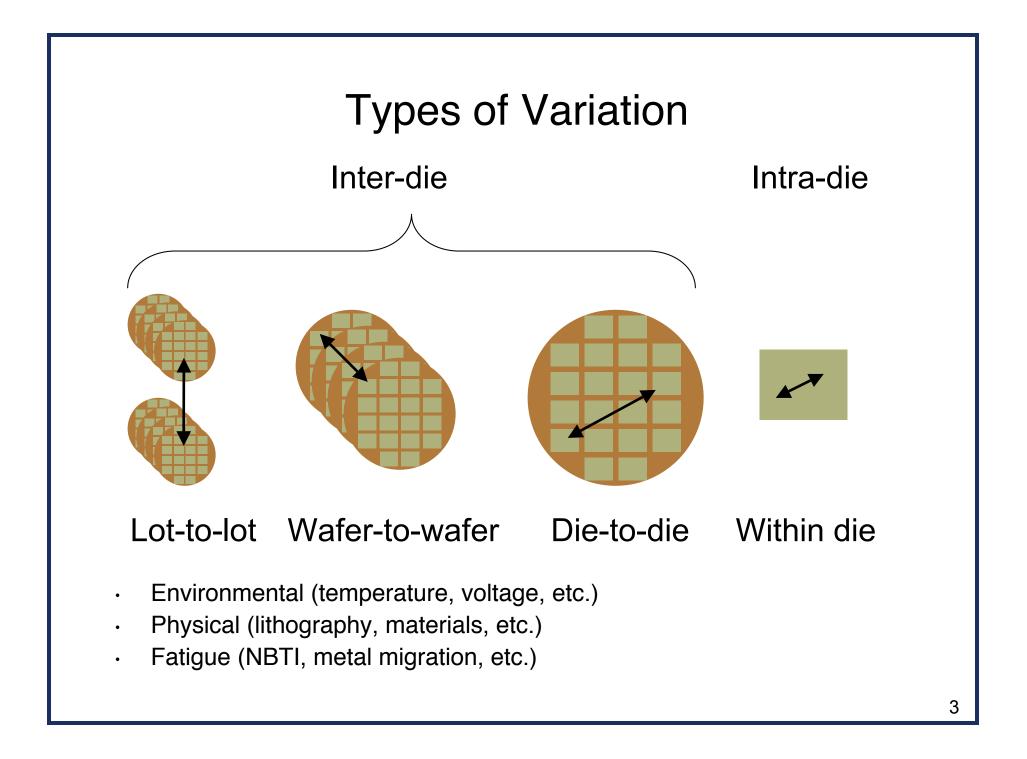
Clock Distribution Networks

- Uniform (H-Tree)
 - Moderate power consumption
 - Fairly robust
 - Sinks are not usually uniform
- Balanced Tree [Tsay ICCAD'91, Chao et al. DAC'92, Boese et al ASIC'92]
 - Minimum wire length
 - Sensitive to process parameters
- Spines [Tam et al ISSCC'06]
 - Used by Intel (P6, Xeon MP)
 - Variations within and between spines still exists
- Grids [Anderson et al ISSCC'06, Golden et al ISSCC'06]
 - Used by IBM (Power4) and AMD (Hammer)
 - Low variation, but huge power overhead

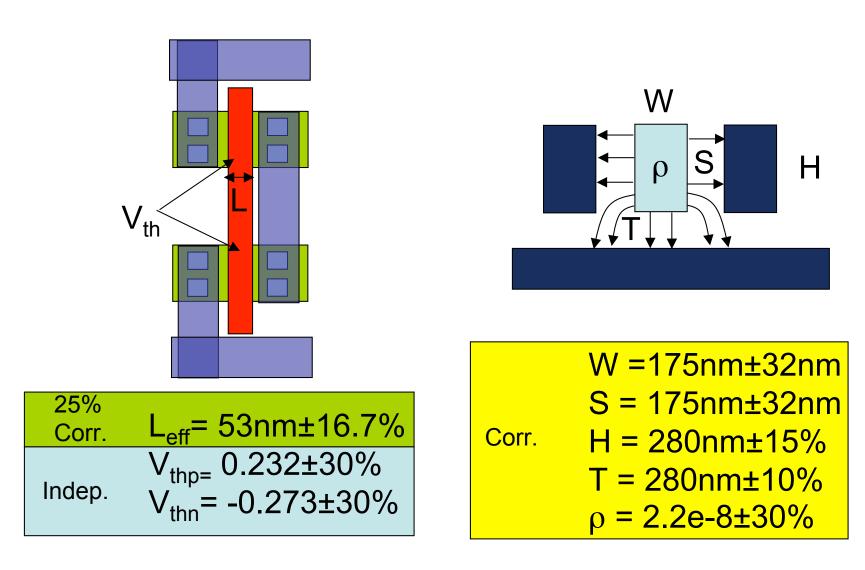








Variation Source Assumptions

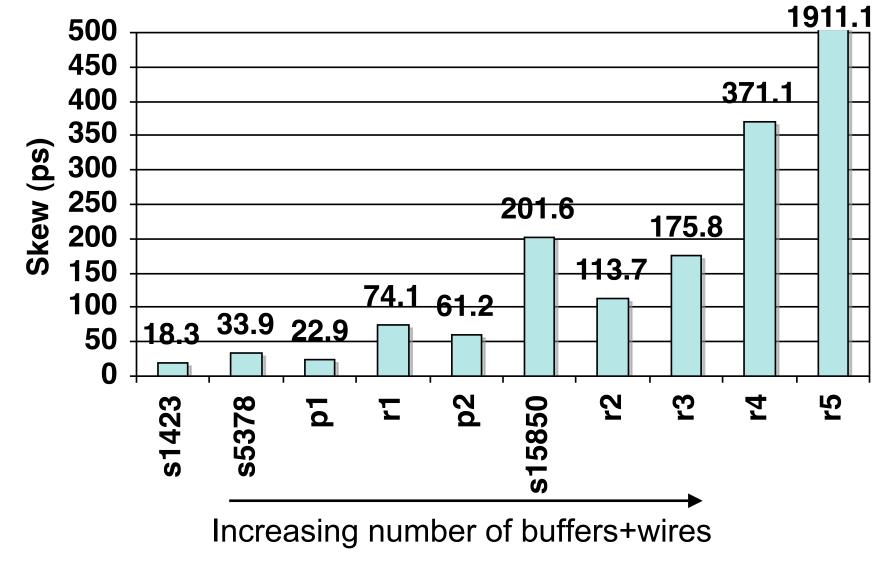


Improving Robustness

- Variation is a major concern in clock distribution
- Current Options
 - Corner-based optimization
 - Process-Voltage-Temp (PVT)
 - Risky, Pessimistic, etc.
 - Direct statistical optimization
 - Many simplifications or expensive to compute
- Can heuristics still help clock tree optimization?

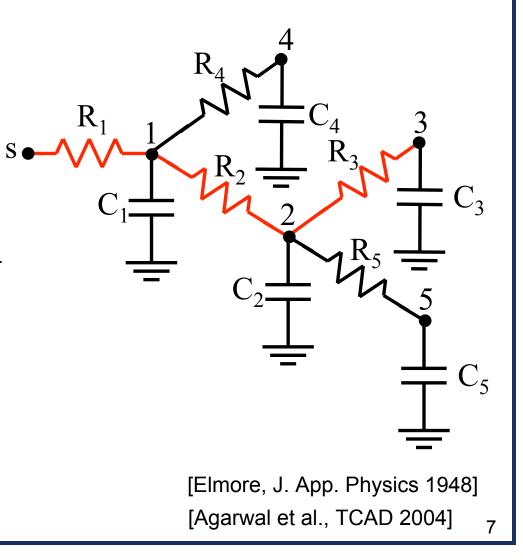


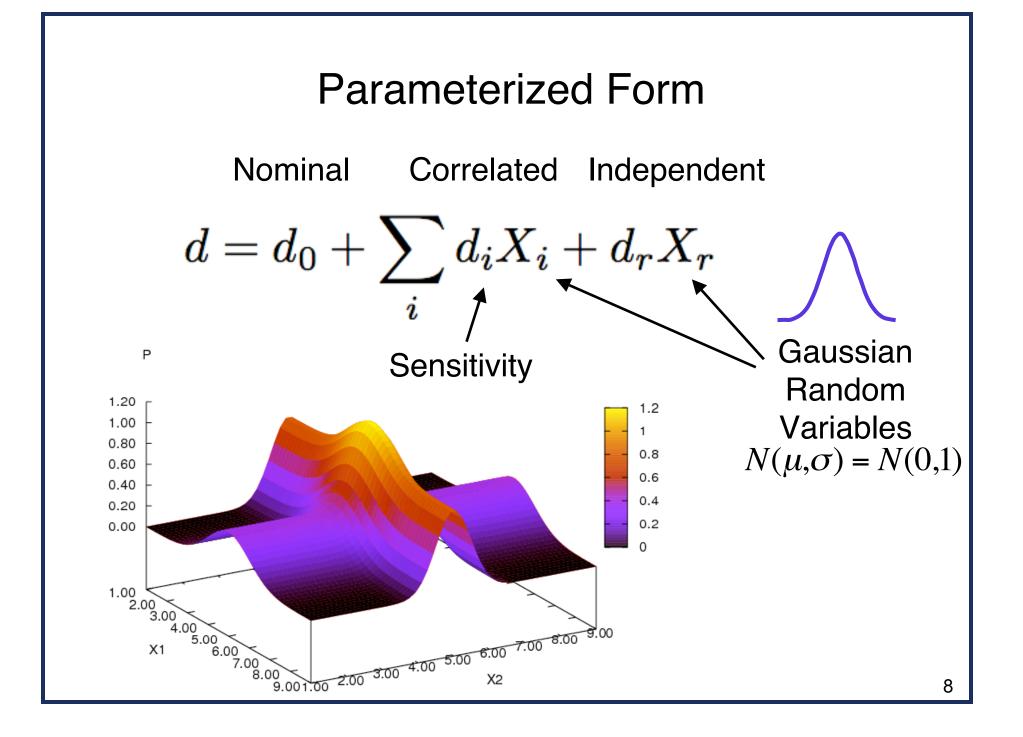
Expected Skew of "Zero Skew" Trees



Skew Calculation

- Elmore delay is not accurate, but high fidelity.
- Fast for optimization.
- S2M for slew calculation.
- Operations Required
 - Add/Subtract
 - Mult
 - Maximum/Minimum
- Delay(s,3)=0.69*(R1(C1+C2+ C3+C4+C5)+ R2(C2+C3+C5)+R3C3)
- Skew
 - Maximum Difference (global skew)
 - Maximum Path-Connected Difference (local skew)





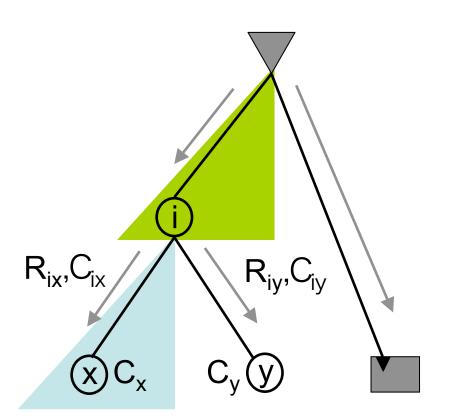
Parametric Operations

- Addition and Subtraction
 - Add/Sub the means
 - Correlated: Add/sub std. dev.
 - Independent: Root-sum-square std. dev.
- Multiplication
 - Many non-linear cross terms
 - Showed that approximating cross-terms as random variation works well
- Maximum and Minimum
 - First and second moments calculated analytically [Clark 1961,Cain 1994]
 - Sensitivities approximated by proportional weight [Visweswariah et al., DAC 2004]

Top-Down Statistical Analysis

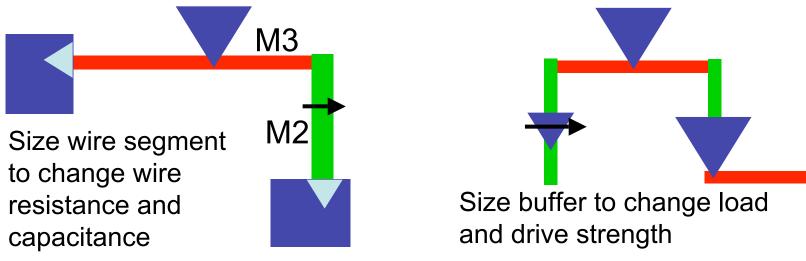
- Parameterized R, C, and D values.
- First bottom-up propagate total sub-tree capacitances, C_i
- Top-down propagate parameterized delays, D_i
- Skew is Max(D_i -D_j) for sinks i and j

$$D_x = D_i + R_{ix}(\frac{C_{ix}}{2} + C_x)$$



Clock Tree Tuning

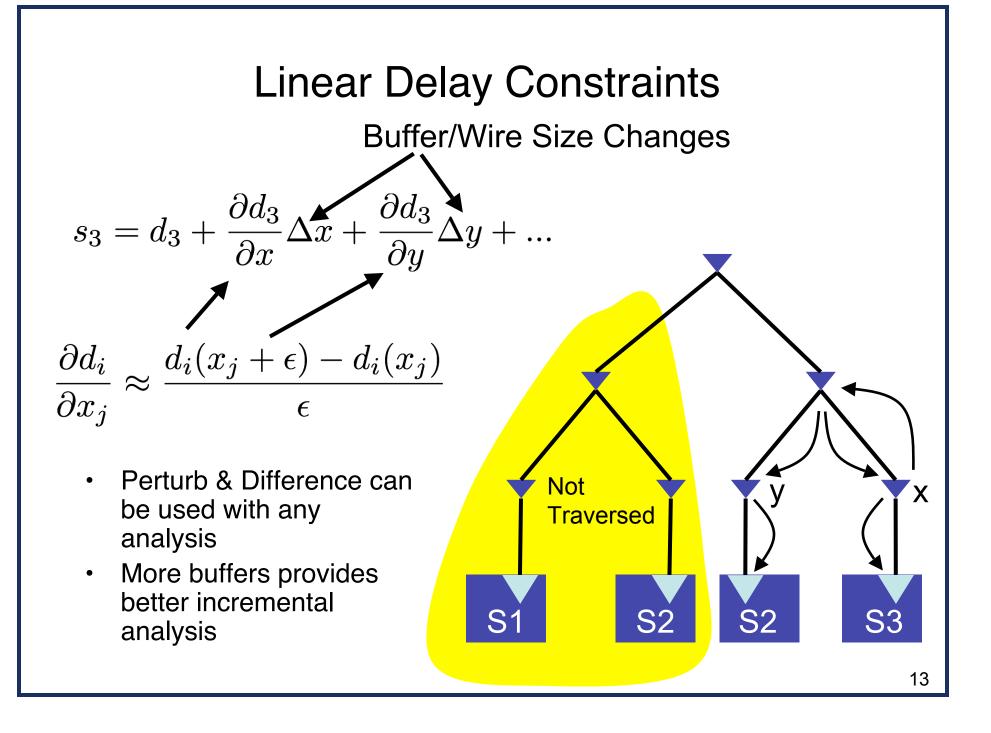
- Start with DME + Buffered tree
- "In Place" Optimization
- Select Buffer Sizes and Wire Widths to Minimize Skew while Increasing Robustness
- Buffer/Wire Sizes
 - Two stage buffer with fixed internal gain
 - Continuous range of buffer output sizes
 - Continuous range of wire widths
 - Minimum and maximum limits for both sizes

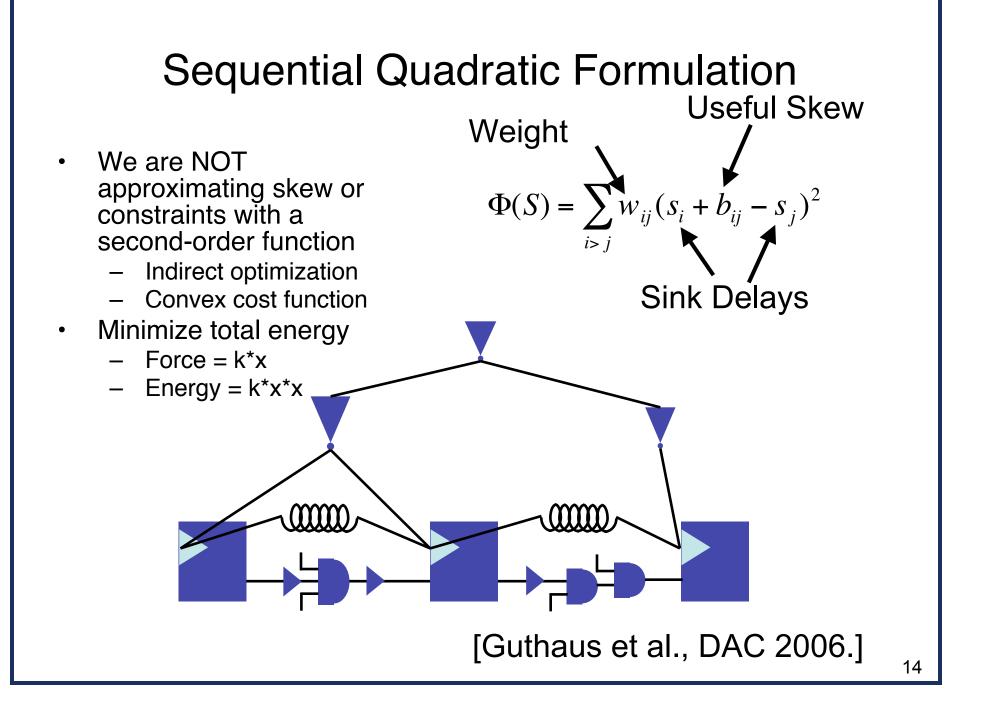


Sequential LP for Clock Skew

 $\begin{array}{lll} \mbox{Minimum Skew Objective min} & s_{max} - s_{min} \\ & \mbox{s.t.} & s_i - s_{min} \geq 0, \forall i \in \mbox{Sinks} \\ & s_{max} - s_i \geq 0, \forall i \in \mbox{Sinks} \\ \hline \mbox{Linear Delay Constraints} & D + G\Delta = S \\ \hline \mbox{Power Bound} & P_{cur} + \beta\Delta \leq P_{max} \\ & \mbox{Simple Bounds} & \max(L_i, x_i - \epsilon_i) \leq x_i + \delta_i \leq \min(U_i, x_i + \epsilon_i) \end{array}$

Similar to Wang and Marek-Sadowska, DAC 2004, but for skew rather than power minimization.





Additional Constraints

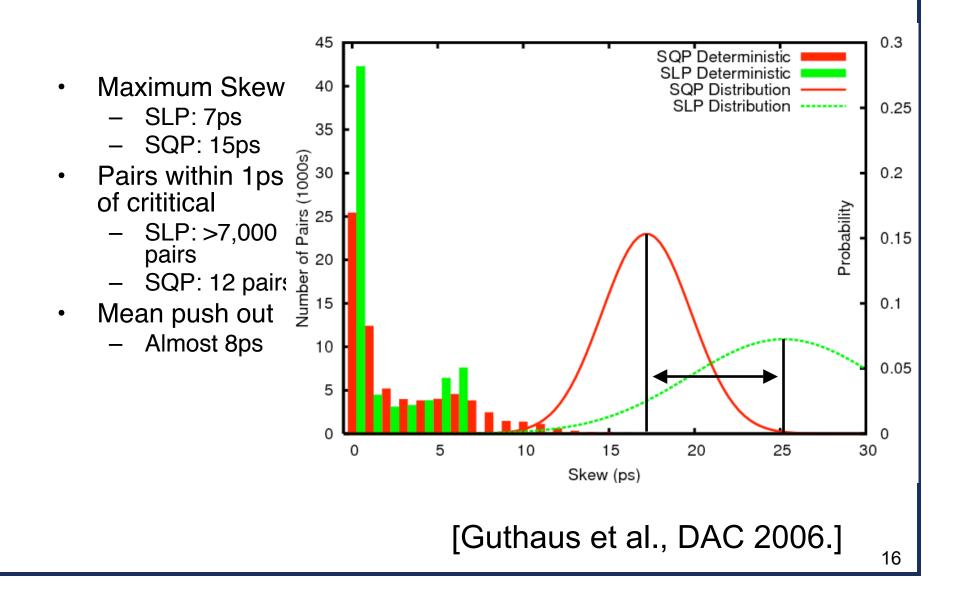
- Power Bound
 - Dominated by dynamic power so capacitance rather than true power is bounded
 - Constraint ensures total size changes are still below power limit

 $\sum_{x \in \{Gates, Wires\}} P(x + \Delta x) \le P_{max}$

- Simple Bounds
 - Linearity of sink delay is only valid in a small range so we restrict the size changes by epsilon
 - Technology places hard upper/lower limits on buffer and wire sizes

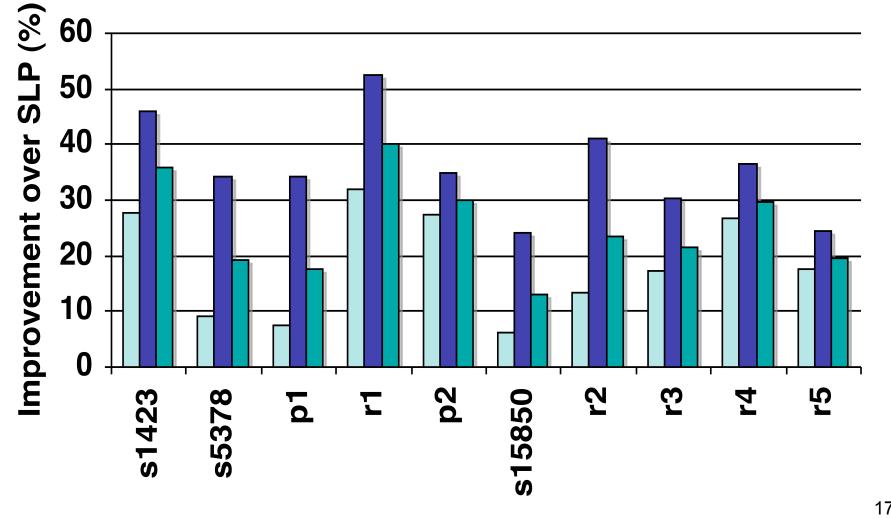
 $\max(L_i, x_i - \epsilon_i) \le x_i + \delta_i \le \min(U_i, x_i + \epsilon_i)$

R1 Linear vs Quadratic "Push Out"



SLP vs. SQP Skew (50% Cap. Increase)

■ Mean ■ Sigma ■ 99.80%



17

Why preserve sensitivities?

- Sensitivities attribute variability to a particular source
- Underlying sources of variation are defined as "correlated"
- Correlated sensitivities can "cancel out" whereas independent sensitivities accumulate as root-sum-ofsquares

 $\int Correlated$ $N(\mu_1 - \mu_2, \sigma_1 - \sigma_2)$ Independent $N(\mu_1 - \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$

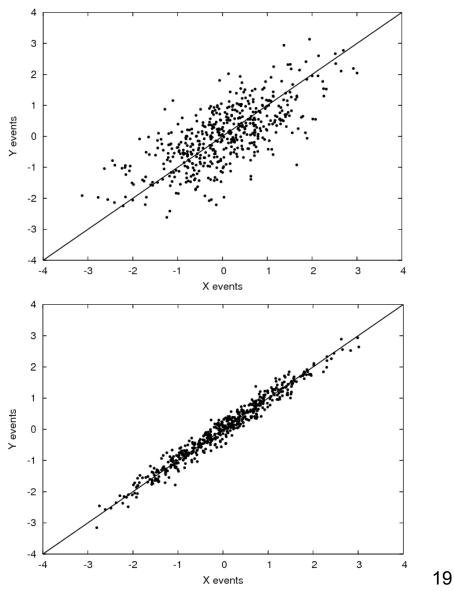
Correlation Definitions

- Defines tendency for events to track
- Formalized with the Pearson correlation coefficient

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

 Can also be defined geometrically as cosine of angle between two event vectors

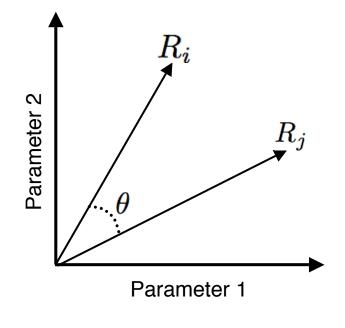
$$\cos\left(\theta\right) = \frac{X \cdot Y}{|X||Y}$$



Geometric Interpretation of Correlation

- Parameterized form is already centered
- Sensitivity coefficients are linear
- Define the sensitivity vector,
 R: k

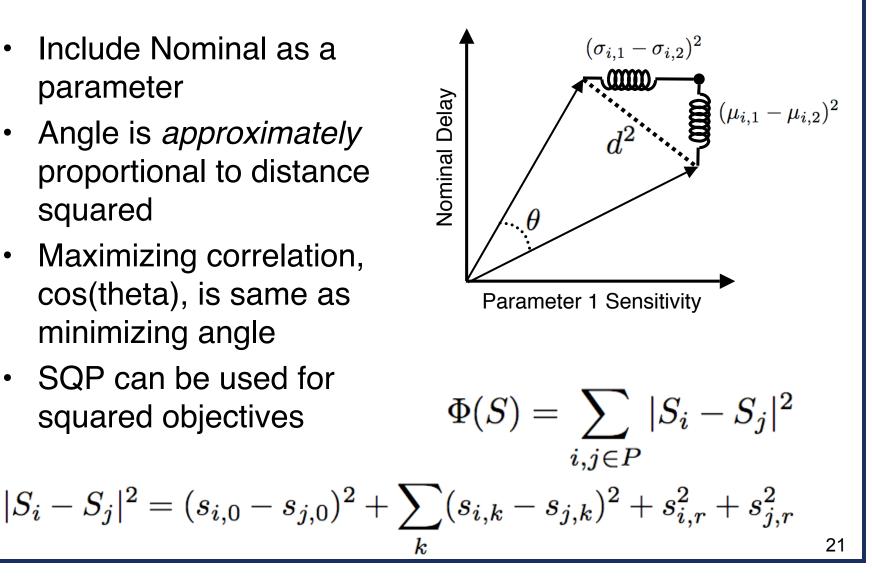
$$A = a_0 + \sum_{i=1}^{T} a_i X_i$$
$$= a_0 + R^T X$$

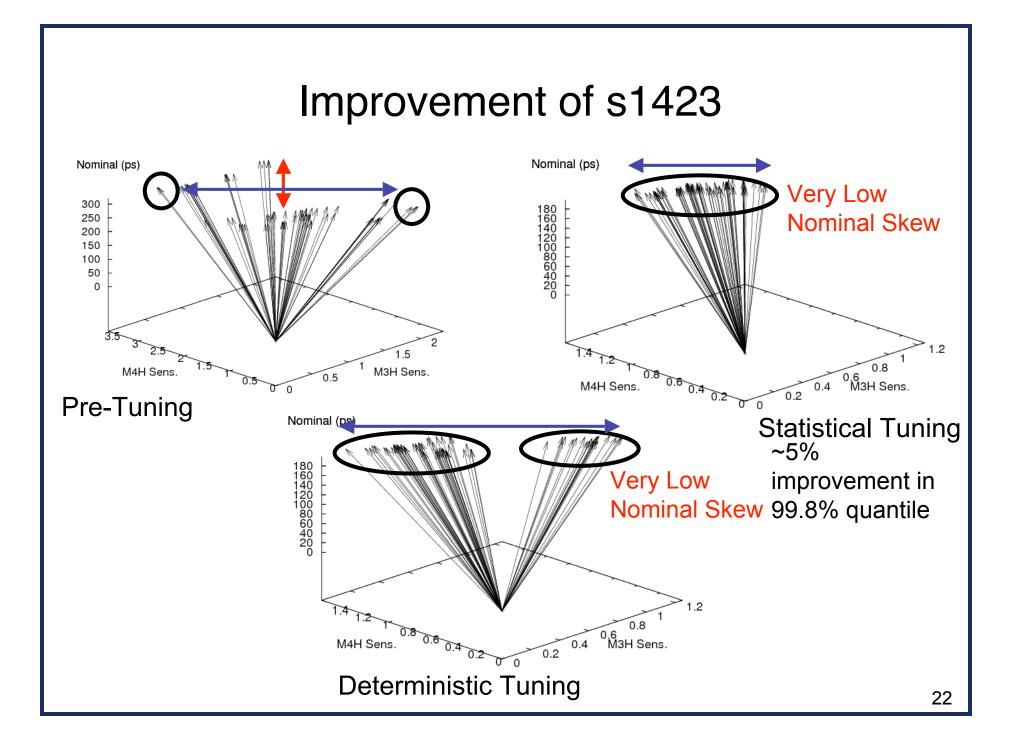


$$cos(heta) = rac{R_i \cdot R_j}{|R_i||R_j|}$$

Heuristic for Increasing Correlation

- Include Nominal as a • parameter
- Angle is *approximately* proportional to distance squared
- Maximizing correlation, • cos(theta), is same as minimizing angle
- SQP can be used for squared objectives

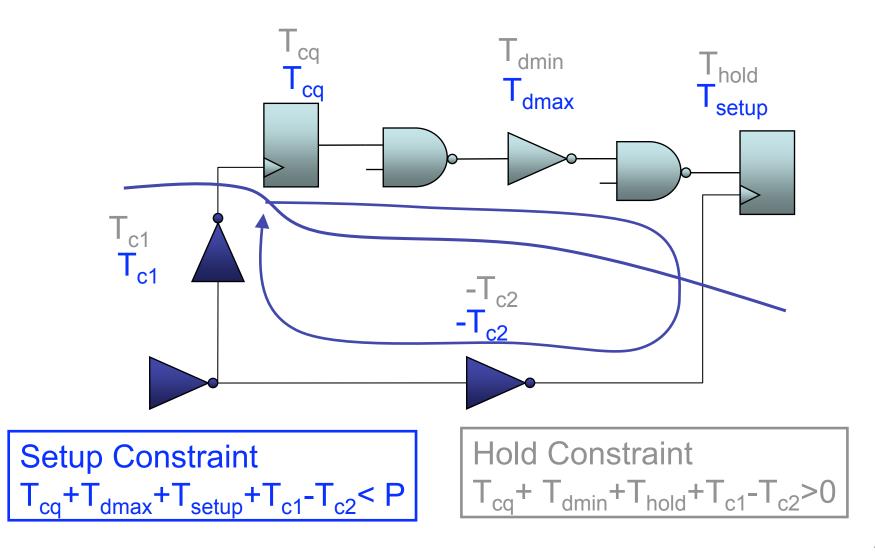




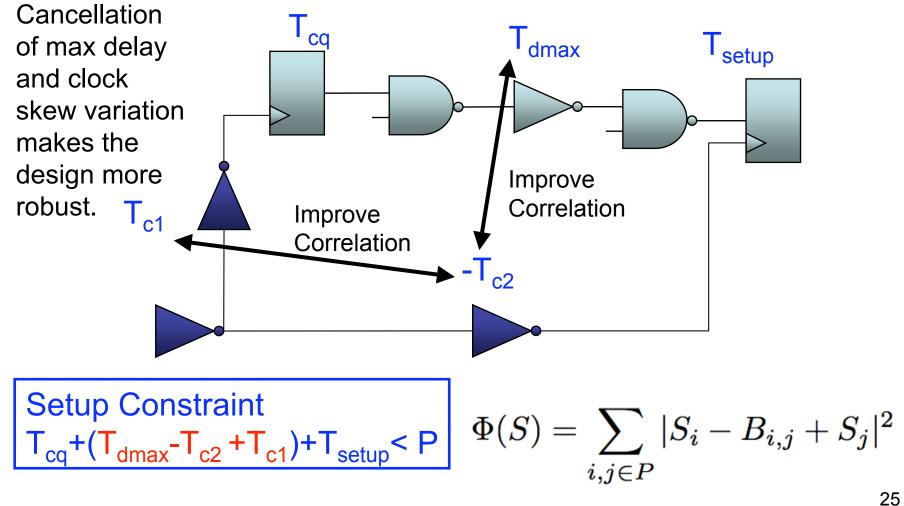
Infeasible Improvement

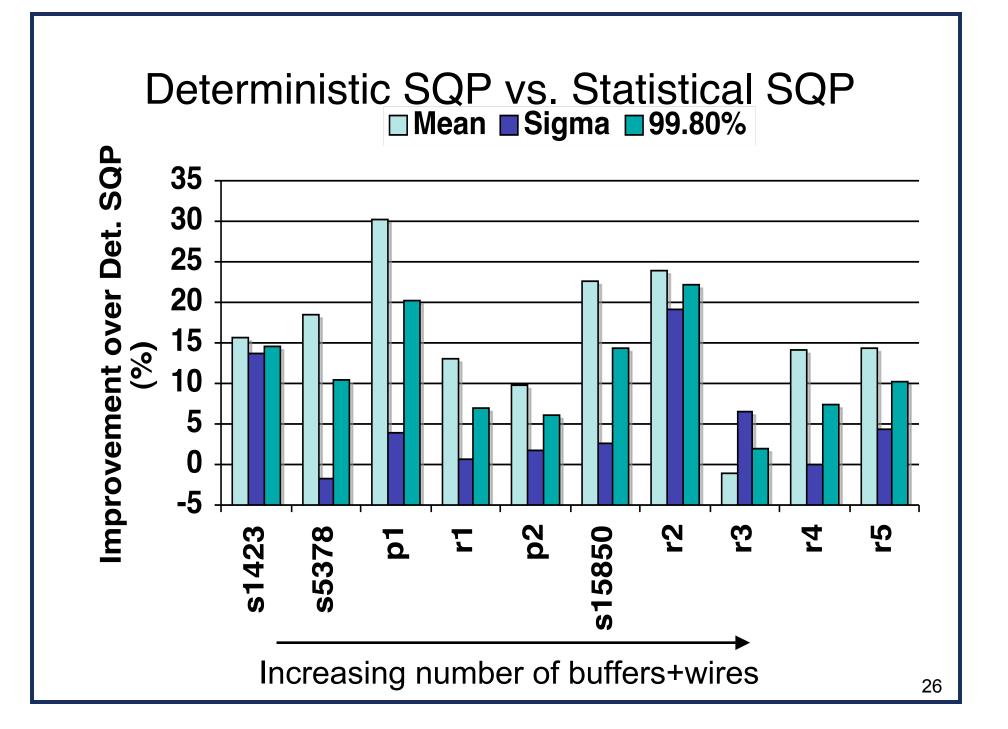
- Sometimes improvement is infeasible
 - Wire assignment is fixed
 - Contradiction of forces can result in zero improvement
 - Mutually exclusive sensitivities can result in zero improvement
- No improvement for other benchmarks
 - Same results as deterministic SQP heuristic
 - But still better than SLP
- Does this mean the idea is bad? No.
 - Consider local, not global, skew with data-path sensitivities.

Timing Constraints Revisited



Beyond Useful Skew: Useful Variation





Run-Time Costs

- Up to 50x the run-time due to naïve gradient computation
- Evaluation of 12 random variables
- Performed all optimization using new method
- Can be used for "fine tuning" after deterministic optimization instead

Conclusions

- New technique for improved correlation
 - Uses distance between canonical vector delay representations
 - Matches nominal delay
 - Matches first order sensitivities
 - Minimizes uncorrelated sensitivity
- Data-path variation awareness
- Average of 16.3% better expected skew
- Average of 11.9% improved mean + 3-sigma

