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Power Leakage

« Exponential rise of IC power dissipation
— Device dimension scales down.
— Threshold voltage shrinks.

o Great portion of total power consumption
— May account for 50% of the total delay
— Wil be further aggravated
— Significant impact on parametric yield



Parameter Variations

« Strong dependence of leakage on both process
and environmental variations.

 Cause a large spread in leakage current.

e 2 kinds of variations are considered.

— Process parameters
o Leff, Vth, and Tox

— Environmental parameters
 Vdd,and T



Parametric Yield Prediction

e Parameter variations reduces the yield of designs.
* Yield prediction methods are required to model

the dependency.
« Limited by fundamental features of IC design
— Incomplete process characterization data.
— Large uncertainty in statistic metrics.
— Correlation between parameters.



Main Purposes

Uncertainty representations
Probabllity representations

Consider both process variations and environme
ntal uncertainty

Consider correlation between parameters

Provide reliable probability bounds for leakage c
urrent



Chebyshev Affine Arithmetic

e Affine form:

N\

X=X, + X & + X6, +++-X &

n—n

— & €[-11] and E[g]=0
— X , central value

— & , noise symbols

— X , partial deviations



Chebyshev Affine Operations

e Can be easily expanded
e 3 cases:

Xt Y =(X+Yo)+ (X +Y)e + (X +VY,)e,
aX = (ax,) + (ax) e, +---+ (ax e,
X+l =(X,+4)+X& +-+X &,

e Still In affine form



Non-affine Operations
e z=f(X,PN=1"(g, . ¢), f "is not affine
* Approximations required
2="1%e,6)=2,+2,6++7,6,+7,6

— L&, represents approximation error

e*(gl’“.’gn): f*(gl’“.’gn)_ fa(gl’“.’gn)

e Returns an Affine form



Chebyshev Approximations

e |n the form of affine combinations : ax+py+¢
e Optimal: minimizes the maximum absolute error
o Geometric illustration Z=oaX+¢ +0ds,

Cumulative Probability

A

E(X)\ A F(x)




L eakage Model

 An empirical model
e Obtained from SPICE simulation

 Model the dependency on parameter variations
— Leff: gquadratic exponential dependency
— Vth: exponential dependency
— Tox: exponential dependency
— Vdd: exponential dependency

— T: supper linear dependency (approximated as expo
nential)

10



Analytical Equations

 Mathematical representations of leakage model
— Subthreshold leakage model

. eaAL2 +DAL+CAVy, +dAV 4 +eAT

I sub — I sub,nom

— Gate leakage model

. @"ATocrkAvdd

gate gate,nom

— Total leakage is the summation

— Isub_l_I

total

gate




Parameter Decomposition

e Parameter variations further decomposed into
two components.

AP = AP pa + AR

ocal

— AP, , the global (inter-chip) variations
— AR, , the local (intra-chip) variations
— Assumed to be independent and normal
— Result in also normal distribution AP
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Improved Leakage Model

e Subthreshold leakage model

2
aAL,” +(28ALg +b) AL, +CAVy, | +dAVdd +AT eaALg +bAL +CAVy,

.. =1 e

sub sub,nom

e Gate leakage model

ATy +kAVED ATy,

gate gate,nom

 They are correlated



Issues with New Technology Nodes

o Parameters are difficult to extract: uncertainty in
probability distributions (70 nm and below)

 We use a set of CDFs consisting of a left and a
right bound F(x)<F(x) < F(x)

F(x)

Cumulative Probability
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Chebyshev vs. Discretized Method
A A

F(X) N

F(x)

robability,

|

Ly

=
)4

Cumulativ




PLPB Representation

* Linearization on CDF: Piece-wise Linear
Probability Bounds (PLPB)
« Computation on Parameters’ CDF functions
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Piece-wise Linear CDF with its inverse

P
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Dependency Bounds of Z=X+Y

e Upper bound

—  max [Fx (U)+Fy (p-u)] if p=#l
F x+v (p) = uelo.p] o —
 FPo+R if p=1

e Lower bound

2o (o[ MIEC@+EV(p-u+] i p 20
e F$(0)+ES(0) i p=0
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Dataflow of Computing F%” (p)

y v
Fy(x) Eyv(y)
! . v
S0 ; =N
v andom
FY(p-u+) Variable X
\ PLPB
oU)=F,"W)+F,”(p-u+)
V
Fer(p) = min g(u)
Inverse
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Fx(il)(u)

TP —u 1)

FooP (- u)

g (u)

AP (p)

u
g(u)=F, ")+ F, " (p-u+1)
E min
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Dependency bounds of X-Y

e Upper bound

—(-1) (-1) i
— max|F u)—F u—p+11 If #1
200 ()| MEXTFx () - By u-pD] i p

Ex 1) —FES(0) if p=1

e Lower bound

= _ :
FC) oy | MNP @-F P w-p)] i p=0
B (p)= |t 0 |

. FRCO-FP@ it p=0




Yield Prediction Procedure

Affine | Non-affine
Operations Operations



Yield Prediction Procedure (continued)
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Experiment Environments

« 65nm Technology node PTM model.
— Leff = 24.5nm

» Coefficients extracted by SPICE simulations.

e Parameter variations
— Modeled as truncated Gaussian distributions.
— Can be well handled if non-Gaussian.

— Leff: 20% variation, Vth: 10% variation, Tox: 8% variat

lon
Vdd: 10% variation, T: 10°C variation.
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Comparison with MC simulation and inter
val analysis: |,
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Comparison with MC simulation and inter

val analysis: I,
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Comparison with MC simulation and inter

0ol 95th percentile

L[ == cAA method

|| MaxVdd & T

Cumulative Probability

val analysis: |,
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Normalized Total leakage Current

Contours for inter-chip L Variation

—»— 50th percentile
—§— G8th percentile

95th percentile
43 —— 95th percentile

i I I I L I
-3 2 3

2 -1 u] 1
Inter-chip Leff Variation /. Lg (unit: o(Lg) )

Shorter channel len
gth causes more si
gnificant variation of

leakage current.
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Conclusion

Based on Chebyshev affine arithmetic
Handle uncertainty of distributions

Deal with correlations among variations
Efficient and reliable yield prediction
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