IMS Institute of Microelectronic Systems Leibniz Universität Hannover

Distribution Arithmetic for Stochastical Analysis

Markus Olbrich, Erich Barke

January 21 - 24, 2008 ASPDAC, COEX, Seoul, Korea

Overview

- Stochastical Analysis
- Moments
- Ideas behind the Distribution Arithmetic
- Distribution Arithmetic
- Results

Parameters Vary – Performance Values Vary

- Parameters
 - Process Parameters (e.g. V_{th} , t_{ox})
 - Design Parameters (e.g. W, L)
 - Operational Parameters: (e.g. V_{dd}, Temp)
- Reasons
 - Manufacturing variability, environment change, operational conditions, ...
- Impact
 - Performance values vary: delay, gain, ...

Parameters and Performance Values are Random Values (RVs)

- Random values are distributed values.
- Representations:
 - Probability/Cumulative density function (PDF/CDF)
 - Moments

Moments

- Moments are integral properties of a distribution
- Examples: Mean, Variance, Skewness, Kurtosis

Circuit Analysis

- Task: Given the distributions of X, determine the distribution of F(X).
- Known methods
 - Monte Carlo
 - Many samples necessary
 - Range Arithmetic (Interval Arithmetic, Affine Arithmetic)
 - Only ranges are calculated
 - Response Surface Methods
 - Approximation of F(X) must exist
- How can we calculate with random variables directly?

Challenges of Building a Distribution Arithmetic

- Description of RV's distributions
- Consideration of correlations between RVs
- Procedures for mathematical operations on RVs
 - Unary Operations: -, sqrt, log, ...
 - Binary Operations: +, *, ...
- Determination of RV's distribution properties

Basic Ideas Behind The Distribution Arithmetic

- 1. Each RV is a linear combination of powers of "Initial Random Values" (IRVs).
- 2. Mathematical operations are approximated by polynomials (Taylor-Series).
- 3. Moments of any RV can be determined by a weighted sum of given IRV moments.
- 4. Semi-symbolic implementation for fast evaluation

Initial Random Values (IRVs)

- Each independent reason for variability is represented by an IRV Δ_i
- Without loss of generality: Expected value $E(\Delta_i)$ of each IRV is 0.
- IRVs can be arbitrarily distributed.
- Only moments of IRVs must be known (or taken from tables).
- IRV symbols are never replaced by values.

RV Representation: Examples

- $W = w_o + \sigma_W \Delta_1$
- W : Random variable for a width
- w_o : Nominal value
- σ_W : Standard deviation (if Δ_1 is standard normal distributed)
- Δ_1 : Initial random value

A more general example:

$$X = x_{2,0}\Delta_1^2 + x_{1,0}\Delta_1 + x_{1,1}\Delta_1\Delta_2 + x_{0,0} + x_{0,1}\Delta_2 + x_{0,2}\Delta_2^2$$

General RV Representation

$$X = \sum_{\vec{i} \in D} \left(x_{i_1, \dots, i_n} \prod_{j=1}^n \Delta_j^{i_j} \right)$$

with

$$D = \left\{ \vec{i} \in \mathbb{N}^n | \sum_{j=1}^n i_j \le l \right\}$$

$$\Delta_i$$
 : IRVs (wlog. $E(\Delta_i) = 0$)

- n : Number of IRVs
- l : DA's order

Unary Operations

 Nonlinear functions T are approximated by a Taylor Series:

$$T(X) \approx \sum_{i=0}^{l} \frac{T_{X^i}(x_0)}{i!} (\Delta X)^i$$

with

$$T_{X^{i}} := \frac{\partial^{i}}{\partial X^{i}} T(x_{0})$$
$$\Delta X := (X - x_{0})$$

Example: 2nd Order Operation

$$X = x_{2,0}\Delta_1^2 + x_{1,0}\Delta_1 + x_{1,1}\Delta_1\Delta_2 + x_{0,0} + x_{0,1}\Delta_2 + x_{0,2}\Delta_2^2$$

$$T(X) \approx T(x_0) + T'(x_0)(X - x_0) + \frac{T''(x_0)}{2!}(X - x_0)^2$$

Binary Operations

- Sum: Simple adding of corresponding coefficients
- Product: Expanding and then neglecting of higher IRV powers
- Others are traced back to +, * and unary operations:

$$\frac{x}{y} = x(y^{-1})$$
$$x^{y} = e^{(y \log x)}$$

Moments Determination

$$m_{X,k} = \cdots + C \operatorname{E}(\prod_{j=1}^{n} \Delta_{j}^{i_{j}}) + \cdots$$

is simple using given IRV moments:

$$E(\Delta_i^k) = m_{\Delta_i,k}$$

$$E(\Delta_i^k \Delta_j^l) = m_{\Delta_i,k} m_{\Delta_j,l}$$

$$m_{\Delta_i,0} = 1$$

$$m_{\Delta_i,1} = 0$$

 $m_{\Delta_i,k}$: *k*th raw moment of Δ_i

Semi-Symbolic Implementation

- C++ using operator overloading
- Delta symbols are not stored for each variable. Only coefficients are stored in arrays:

$$X = x_{2,0}\Delta_1^2 + x_{1,0}\Delta_1 + x_{1,1}\Delta_1\Delta_2 + x_{0,0} + x_{0,1}\Delta_2 + x_{0,2}\Delta_2^2$$

$$\left(\begin{array}{c} x_{2,0} \\ x_{1,0} & x_{1,1} \\ x_{0,0} & x_{0,1} & x_{0,2} \end{array}\right)$$

- Delta symbol powers arise from position
- Implemented Functions
 - All standard math-operations (+,*,/, log, sqrt, ...)
 - Moment determination (Variance, Skew, Kurtosis, ...)
 - Correlation coefficient determination, sensitivities to IRVs

Example: Elmore Delay Calculation

Rs and Cs calculated from five independent geometrical parameters

of 10 % is assumed

$$\tau = (R_D + R_1)C_1 + (R_D + R_1 + R_2)C_2 + (R_D + R_1 + R_2 + R_3)C_3 + (R_D + R_1 + R_2 + R_3 + R_4)(C_4 + C_g) + (R_D + R_1)(C_5 + C_6 + C_g)$$

Error and Runtimes of Elmore Delay Calculation

Order	$\mu_{ au}$	$\sigma_{ au}$	Skewness	Kurtosis	Runtime
1	0.3 %	1.5 %	100 %	790 %	0.00 ms
2	0.0 %	1.2 %	7.1 %	99.6 %	0.01 ms
3	0.0 %	0.1 %	3.9 %	18.1 %	0.04 ms
4	0.0 %	0.1 %	0.4 %	4.4 %	0.13 ms
MC 10 ⁴	0.2 %	0.4 %	11.5 %	24.4 %	6 ms
MC 10 ⁹					454 s

Runtimes of Basic Operations

Conclusion

- Distribution Arithmetic allows to calculate with RVs as easy as with real values
- Correllations between RVs are considered
- RV moments can be determined directly
- Fast and accurate
- Not restricted to normal distributions
- Selectable tradeoff between runtime and accuracy by choosing DA order

Future Work

- Equation solver using DA variables
- DC and transient simulation with DA values
- Speed up by automatic neglect of non important coefficients

Thank you for your attention.