Handling Partial Correlations in Yield Prediction

Sridhar Varadan Dept of ECE Texas A&M University *Janet Wang* Dept of ECE University of Arizona

Jiang Hu Dept of ECE Texas A&M University

Presentation Outline

> What is Yield?

- Difficulties in Yield Prediction
- Previous Research
- Proposed Research
- Simulation Results
- Conclusion

What is Yield?

- Yield Probability of any Manufacturing or Parametric spec satisfying its limits.
- Manufacturing Yield for manufacturing specs.
- Parametric Yield performance measures (timing, power etc.)
- Process variations affect yield prediction.
- Intra-die process variations no longer negligible.

Process Variations

- Chip manufacturing involves complex chemical and physical processes.
- Tighter pitches and bounds make process variations unavoidable.
- Types of process variations
 - 1. Systematic process variations layout dependent
 - 2. Random process variations
 - a. Inter-die Random variations depend on circuit design
 - b. Intra-die Random variations dominant components
 - (1) Independent random variations
 - (2) Partially correlated random variations
 - 3. Overall intra-die variations at n locations -

$$p(n) = \mu(n) + \varepsilon(n)$$

where $\mu(n)$ – systematic intra-die variations $\epsilon(n)$ – random intra-die variations

CMP Yield

- Chemical Mechanical Planarization (CMP) used in patterning Cu interconnects.
- CMP model Yield is probability of thicknesses at all locations lying within the Upper and Lower thickness limits.
- For simplicity, a chip is meshed into a no. of tiles.
- Each tile is a location monitored for interconnect thickness.

Illustrating a CMP Model

Process variations in interconnect thicknesses at n locations -

 CMP Yield –Probability for thickness at n locations to lie in the shaded region.

Need for Predicting CMP Yield

- Factors making Yield Prediction important
 - 1. Presence of Process Variations
 - 2. Shrinking feature sizes
- Dishing Excessive polishing of Cu.
- Erosion Loss in field oxide between interconnects.
- Potential open and short faults in interconnects.
- Predict Yield in circuit design stages to get Yield friendly design.

Equations for Yield Prediction

Yield is obtained via numerical integration of a joint PDF -

$$Y = \int_{L}^{U} \int_{L}^{U} \dots \int_{L}^{U} \phi(p) dp dp dp dp \dots dp n \dots (1)$$

$$\phi(p) = \frac{(\overrightarrow{p} - \overrightarrow{\mu})^T \Sigma^{-1} (\overrightarrow{p} - \overrightarrow{\mu})}{\sqrt{(2\pi)^n |\Sigma|}} \dots \dots (2)$$

Where Σ - covariance matrix for the *n* variables – {p₁, p₂,...,p_n} *U*, *L* & μ - upper and lower thickness limits, & mean thickness value.

Yield equation (1) can be decomposed as -

$$Yield = Y_{U} + Y_{L} - 1$$
(3)

Where Y_U (*High Yield*) - probability for thickness at all locations to stay below upper thickness limit.

Y_L (or Low Yield) - probability for thickness at all locations to stay above lower thickness limit.

Presentation Outline

✓ What is Yield?

Difficulties in Yield Prediction

- Previous Research
- Proposed Research
- Simulation Results
- Conclusion

Difficulties in Yield Prediction

- Issues Affecting Yield Prediction
 - 1. Large number of locations to monitor (10⁴-10⁶).
 - 2. Independent & partial correlations between locations.
 - 3. Large memory requirements.
 - 4. Complexity of numerical integration due to problem size.

Presentation Outline

- ✓ What is Yield?
- ✓ Difficulties in Yield Prediction
- Previous Research
- Proposed Research
- Simulation Results
- Conclusion

Previous Research

- Perfect Correlation Circles (PCC) approach to reduce no. of tiles.
- Luo, et al., DAC 2006

Algorithm for PCC Approach

- 1. Find tile with maximum thickness MAX_{I} .
- 2. Form $PCC CIRCLE_1$ (centre at MAX_{1_1} pre-fixed radius).
- 3. Find tile with maximum thickness MAX_2 outside $CIRCLE_1$.
- 4. Form PCC CIRCLE₂ (centre at MAX_2).
- 5. Form similar *PCCs* until no tiles are left uncovered by *PCCs*.
- 6. Centers of PCCs (MAX_1 ,, MAX_m) form reduced set of variables.
- 7. Use Genz algorithm to compute yield.

Example Showing Reduction

- Let the setup look like this after reduction →
- Reduction from 90 tiles to 14 variables (the centres of PCCs - MAX₁,, MAX₁₄.)
- PCCs are formed in a sequence MAX₁ – CIRCLE₁, MAX₂ – CIRCLE₂,

 $MAX_{13} - CIRCLE_{13},$ $MAX_{14} - CIRCLE_{14}.$

> Compute Low Yield using similar procedure.

Pros and Cons of the PCC Approach

- Advantages
 - 1. Reduction in problem complexity.
 - 2. Reduced run-time.
- Disadvantages
 - 1. Yield Accuracy is affected.
 - a. Large PCC radius → Heavy reduction in variables. (over-estimation in yield)
 - b. Small PCC radius → Lesser reduction in Variables.
 → more accurate yield estimate (but larger run-time)

Presentation Outline

- ✓ What is Yield?
- ✓ Difficulties in Yield Prediction
- Previous Research
- Proposed Research
- Simulation Results
- Conclusion

Proposed Research

- Develop reduction methods to
 - 1. Reduce problem complexity.
 - 2. Reduce effect on yield accuracy.
- Two new methods for predicting yield
 - 1. Orthogonal Principal Component Analysis (OPCA)
 - 2. *Hierarchical Adaptive Quadrisection (HAQ)*

Yield Model used in this Work

• Let vector p be metal thicknesses at n locations – $\overrightarrow{p} = (p_1, p_2, ..., p_n)^T$

This vector an be decomposed as follows -

$$p_i = \mu_i + \delta_i$$
 and $\mu_i = \mu + \Delta_i$

where μ – nominal value Δ_i – systematic variation δ_i – random variation

Orthogonal Principal Component Analysis

- Objective Transform correlated random variables to a reduced & uncorrelated set through an orthogonal base
- Procedure
 - 1. Form initial thickness vector, correlation & covariance matrices.
 - 2. Perform Eigenvalue Decomposition.

- 3. Transform into to set of uncorrelated variables through a mapping matrix.
- 4. Discern unwanted eigenvalues to get reduced set of uncorrelated variables.
- > Initial Setup for OPCA -

Let the initial thickness variations at *n* locations be -

$$\vec{\delta} = \{\delta_1, \delta_2, \dots, \delta_n\}^T$$
(1)

• Let Γ_{nxn} and Σ_{nxn} be the corresponding correlation and covariance matrices. Let σ_i^2 be the variance.

$$\Gamma(\vec{\delta}) = (\Gamma_{ij})_{nxn}$$
 and $\Sigma(\vec{\delta}) = \Gamma(\vec{\delta})_{nxn} \cdot \sigma_i \cdot \sigma_j$ (2)

Using Eigenvalue Decomposition

Re-express covariance matrix using Eigenvalue Decomposition -

$$\Sigma(\vec{\delta}) = Q \cdot \Lambda(\vec{\delta}) \cdot Q^{T} \qquad \dots (3)$$

where $\Lambda(\vec{\delta})$ – eigenvalue (diagonal) matrix

 $Q\,$ - corresponding eigenvector matrix

• The diagonal matrix $\Lambda(\delta)_{n \times n}$ will look like –

$$\Lambda(\vec{\delta}) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \dots (4)$$

such that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$

 Eigenvalue decomposition gives dominant directions in covariance relationship between a correlated set of variables.

Mapping into a New Set of Variables

• Let $\mathcal{E}_{n \times 1}$ be the new set of uncorrelated variables such that –

$$\delta = B \cdot \varepsilon$$
(5)

Without loss of generality, assume B follows a Gaussian Distribution –

$$\mu(\vec{\varepsilon}) = 0 & \Lambda(\varepsilon) = I \qquad \dots (6)$$

• The matrices $\delta_{n \times 1}$ and $\epsilon_{n \times 1}$ are related as follows -

$$\Lambda(\vec{\delta}) = J \cdot \Lambda(\vec{\varepsilon}) \cdot J^T \qquad \dots (7)$$

$$\begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \end{pmatrix}$$

where

- $J = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$
- Transforming through an Orthogonal Base Let B be the mapping matrix –

Transforming through an Orthogonal Base Contd..

Correspondingly, we have -

$$\vec{\delta} = B \cdot \varepsilon = Q \cdot J \cdot \vec{\varepsilon}$$
(9)

This transforms the initial set of correlated random variables to an uncorrelated set through an orthogonal base.

$$\sum_{i}(\vec{\delta}) = Q \cdot \Lambda(\vec{\delta}) \cdot Q^{T} = Q \cdot J \cdot \Lambda(\vec{\varepsilon}) \cdot (Q \cdot J)^{T} \qquad \dots (10)$$

• Reducing the no. of uncorrelated variables – 1. After reduction, if we have *k* variables, then matrices $\Lambda(\delta)$ and $J_{k \times k}$ are –

2. The corresponding sizes of matrices B and Q become $n \times k$, thus giving reduction.

Hierarchical Adaptive Quadrisection

- Conquer and divide based clustering approach.
- Clustering done using *sub-regions* (similar to PCCs).
- Clustering in *sub-regions* is based on thickness variations.
- Sizes of clusters are not homogeneous.

Computing High Yield using HAQ

- Consider entire chip as one basic *sub-region S*.
- Sub-region S consists of tiles used in evaluating yield.
- Threshold thickness value θ decides possibility of clustering.
- Threshold θ tells on variations in thickness of tiles in a sub-region.

Working Model for Computing High Yield

• Stage 1:- Sub-region S covers the entire chip. Let θ be 10.

Sub-region	Max Thickness		C _d	C _d ≤θ	Next
Monitored	Critical	Non-Critical			Action
S	97	93, 95, 94	2	Yes	Quadrisect

Working model for High Yield Stage 2

Stage 2 – After forming sub-regions S_1 , S_2 , S_3 and S_4 .

Sub-region	Max Thickness		C _d	C _d ≤θ	Next
Monitored	Critical	Non-Critical			Action
S ₁	93	85, 78, 81	8	Yes	Quadrisect
S ₂	97	83, 79, 86	11	No	Retain
S ₃	95	76, 73, 80	15	No	Retain
S_4	94	88, 84, 89	5	Yes	Quadrisect

Working Model for High Yield Stage 3

> Stage 3 – Inside sub-regions $\{S_{11}, S_{12}, S_{13}, S_{14}\} \& \{S_{41}, S_{42}, S_{43}, S_{44}\}$.

					S	2	
P ₁₁₋₁	P ₁₁₋₂	63	78				
72	85	P ₁₂₋₁	P ₁₂₋₂				
P ₁₁₋₃	P ₁₁₋₄	P ₁₂₋₃	P ₁₂₋₄		97		
74 s	79	65 S12	60				
P ₁₃₋₁ s	13 P ₁₃₋₂	P ₁₄₋₁ S ₁₄	P ₁₄₋₂				
81	70	79	77				
P ₁₃₋₃	P ₁₃₋₄	93	75				
68	66	P ₁₄₋₃	P ₁₄₋₄				
	95			P ₄₁₋₁	P ₄₁₋₂	88	75
				82	78	P ₄₂₋₁	P ₄₂₋₂
				P ₄₁₋₃	P ₄₁₋₄	P ₄₂₋₃	P ₄₂₋₄
				87 5	41 94	73 S	42 67
				P ₄₃₋₁ S	43 P43-2	86 S	44 81
				71	84	P ₄₄₋₁	P44-2
				P ₄₃₋₃	P ₄₃₋₄	89	78
				66	69	Pues	P

S₃

Sub-region	Max Thickness		C _d	C _d ≤θ	Next
Monitored	Critical	Non-Critical			Action
S ₁₁	85	72, 74, 79	6	Yes	Quadrisect
S ₁₂	78	63, 65, 60	13	No	Retain
S ₁₃	81	70, 68, 66	11	No	Retain
S ₁₄	93	79, 77, 75	16	No	Retain

Sub-region	Max Thickness		C _d	C _d ≤θ	Next
Monitored	Critical	Non-Critical			Action
S ₄₁	94	82, 78, 87	7	Yes	Quadrisect
S ₄₂	88	75, 73, 67	13	No	Retain
S ₄₃	84	71, 66, 69	11	No	Retain
S ₄₄	89	86, 81, 78	3	Yes	Quadrisect

Working Model for High Yield After Stage 3

• After Stage 3 in the HAQ algorithm, the setup will look like -

- Stage 3, the chip is covered by 19 basic sub-regions.
- Further clustering based on thickness variations in new sub-regions.

Computing Low Yield using HAQ

Clustering based on minimum thickness variations in sub-regions.

Comparing HAQ and PCC approaches

HAQ Approach

- Heterogeneous cluster sizes
- Clustering based on variations and sensitivity inside sub-regions
- No. of Clusters in working model Stage-1 → 4 Stage-2 →10 Stage-3 →19

PCC Approach

- Homogeneous cluster sizes
- No importance for sensitivity in variations for clustering
- No. of Clusters in each stage of the working model
 - Stage-1 \rightarrow 4 Stage-2 \rightarrow 16 Stage-3 \rightarrow 64

Presentation Outline

- ✓ What is Yield?
- Difficulties in Yield Prediction
- Previous Research
- ✓ Proposed Research
- Simulation Results
- Conclusion

Simulation Results

- Experiments simulated
 - 1. Monte Carlo (MC) Simulations
 - 2. PCC method
 - 3. OPCA method
 - 4. HAQ method
- > Yield evaluated for three cases of correlation $-(-\alpha \times 10^{-5} x) + 0.9958$

where $\alpha = \{2, 3, 4\}$ and x- distance between centres of different tiles.

Simulation Inputs –

1. Input thickness –

Mean thickness value - 0.3580 µm Upper thickness limit - 0.4580 µm Lower thickness limit - 0.2580 µm Standard deviation - 0.02 µm

30

Monte Carlo Simulations

- Correlation Equation: $-3 \times 10^{-5} x + 0.9958$
- Initial seed = 5

PCC Simulations

Correlation Equation	PCC Size	No. of Variables	
	150 µm	431/435	
$-2 \times 10^{-5} x + 0.9958$	250 µm	305/310	
	150 µm	432/427	
$-3 \times 10^{-5} x + 0.9958$	250 µm	305/310	
	150 µm	429/425	
$-4 \times 10^{-5} x + 0.9958$	250 µm	307/308	

OPCA Simulations

HAQ Simulations

Correlation Equation	θ	No. of Variables	
$2 \times 10^{-5} \times 10^{-5}$	0.09 µm	175/178	
$-2 \times 10 x + 0.9938$	0.075 µm	153/155	
$3 \times 10^{-5} r + 0.0058$	0.09 µm	80/79	
-3×10 $\lambda + 0.9938$	0.075 µm	61/61	
4 10 -5 0 00 50	0.09 µm	172/170	
$-4 \times 10^{-5} x + 0.9958$	0.075 µm	148/143	

Observations in Results

- Monte Carlo without OPCA –
 Neglecting correlation under-estimates yield.
- OPCA -

Less variable reduction \rightarrow better accuracy, yield is closer to Monte Carlo.

PCC -

Larger PCC sizes \rightarrow more reduction \rightarrow over-estimated yield value Smaller PCC sizes \rightarrow improves accuracy in yield \rightarrow longer run time

HAQ -

Higher threshold values \rightarrow less reduction (fine-grained grid)

→ improved accuracy

Smaller threshold values \rightarrow over-estimated yield

Comparisons in Results

Comparing yield accuracy and algorithm run time –

Correlation Equation	Method	Yield	Speedup
		Error	
	PCC	18.9%	1x
5	OPCA	2.7%	4.6x
$-3 \times 10^{-5} x + 0.9958$	HAQ	4.1%	9.4x
	PCC	21.1%	1x
	OPCA	2.8%	4.7x
$-4 \times 10^{-5} x + 0.9958$	HAQ	5.6%	6.2x
	PCC	17.1%	1x
5	OPCA	1.3%	4.7x
$ -2 \times 10^{-5} x + 0.9958 $	HAQ	5.3%	6x

Presentation Outline

- ✓ What is Yield?
- ✓ Difficulties in Yield Prediction
- Previous Research
- ✓ Proposed Research
- ✓ Simulation Results

Conclusion

Conclusion

- Yield prediction is complex
 - 1. Large number of locations monitored
 - 2. Partial & independent correlations between locations
- New methods used in yield prediction
 - 1. Orthogonal Principal Component Analysis
 - 2. Hierarchical Adaptive Quadrisection
- Both reduce complexity & have less impact on Yield Accuracy.

Scope for Future Work

Extend same methods to predict timing yield in sequential circuits.

Thank You

