ReSP: A Non-Intrusive Transaction-Level
Reflective MPSoC Simulation Platform for
Design Space Exploration

G. Beltrame! C. Bolchini® L. Fossati® A. Miele¥ D. Sciuto®

TEuropean Space Agency §Politecnico di Milano
Microelectronics Section Dipartimento di Elettronica e Informazione

January 17, 2008

mailto:Giovanni.Beltrame@esa.int
mailto:bolchini@elet.polimi.it
mailto:fossati@elet.polimi.it
mailto:miele@elet.polimi.it
mailto:sciuto@elet.polimi.it

QOutline

© Introduction

@ Reflective Simulation Platform

© ReSP Performance

@ Application Scenario: Using ReSP for Fault Analysis

© Conclusions

/16

QOutline

© Introduction

@ Overview
@ A bit of history

Overview

ReSP: Reflective Simulation Platform
e A Virtual Platform for Hardware/Software codesign

2/16

Overview

ReSP: Reflective Simulation Platform

e A Virtual Platform for Hardware/Software codesign

@ Provides the speed of C++, the modeling facilities of SystemC
and the reflective and scripting capabilities of Python
o Reflection allows a non-intrusive visibility on all the platform
elements

/16

Overview

ReSP: Reflective Simulation Platform

e A Virtual Platform for Hardware/Software codesign

@ Provides the speed of C++, the modeling facilities of SystemC
and the reflective and scripting capabilities of Python

o Reflection allows a non-intrusive visibility on all the platform
elements

Advantages of the Approach
@ casy integration of external IPs and models
@ fine grain control of system-level simulation

© effortless development of tools for system analysis and design
space exploration

/16

Virtual Platforms

Definition
Virtual Platform: a system level model that represents the real
system behavior

3/16

Virtual Platforms

Definition
Virtual Platform: a system level model that represents the real
system behavior
@ operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

@ used in system-level design (ESL) for application functional
and performance analysis

16

Virtual Platforms

Definition
Virtual Platform: a system level model that represents the real
system behavior

@ operates at the level of processor instructions, memory
accesses, and data packet transfers, as opposed to RTL

@ used in system-level design (ESL) for application functional
and performance analysis
@ Enables Hardware/Software codesign

@ Improves reuse of models during ESL design

16

Related Work

@ StepNP: A System—Level Exploration Platform for Network
Processors (Paulin at al., 2000):
o First widespread SystemC platform
e Require special wrappers around the component models
o Access to simulation via SIDL, a custom interface definition
language

16

Related Work

@ StepNP: A System—Level Exploration Platform for Network
Processors (Paulin at al., 2000):
o First widespread SystemC platform
e Require special wrappers around the component models
o Access to simulation via SIDL, a custom interface definition
language
@ Exploiting TLM and object introspection for system-level simulation
(Beltrame at al., 2005): introduces the concept of introspection

e Intrusive approach, requiring manual component modifications
o Based on StepNP

16

Related Work

@ StepNP: A System—Level Exploration Platform for Network
Processors (Paulin at al., 2000):
o First widespread SystemC platform
e Require special wrappers around the component models
o Access to simulation via SIDL, a custom interface definition
language
@ Exploiting TLM and object introspection for system-level simulation
(Beltrame at al., 2005): introduces the concept of introspection
e Intrusive approach, requiring manual component modifications
o Based on StepNP
@ Embed scripting inside SystemC (Vennin at al., 2006): proposes
integration among SystemC and Python
o Python is used to embed scripting inside SystemC modules, but
requires modifications to the SystemC kernel
o reduces code size, at the expense of speed reduction (10x reduction)

16

QOutline

© Reflective Simulation Platform
@ Simulation Core
@ Overall Structure
@ Tools
@ Component Models
@ Wrapper Generation

ReSP: Simulation Core

@ Based on the OSCI SystemC TLM library
e Used for keeping simulation time
e Used for low level communication
e Python wrappers have been automaticaly created

16

ReSP: Simulation Core

@ Based on the OSCI SystemC TLM library

o Used for keeping simulation time
e Used for low level communication
e Python wrappers have been automaticaly created

@ Provides a simulation controller

o Extends SystemC with asynchronous control

o Keeps basic statistics about the simulation

o Instantiates and connects the available architectural
components

16

ReSP: Simulation Core

@ Based on the OSCI SystemC TLM library
o Used for keeping simulation time
e Used for low level communication
e Python wrappers have been automaticaly created
@ Provides a simulation controller
o Extends SystemC with asynchronous control
o Keeps basic statistics about the simulation
o Instantiates and connects the available architectural
components

@ Interacts with the user through one or more
Human Computer Interfaces

e E.g. An extended Python console and a socket interface

16

ReSP Core

ReSP: Overall Structure

Simulation

Commands

Human-Computer

Controller

SystemC
Kernel

Python

Registration

Interface (HCI)

I —

Wrapper

—_—

Wrapper

SystemC

Simulation and
timing control

ReSP IPs

IP

Access to Signals
and variabes

Generation

1
1

Analysis |
Tools |
1

ReSP Tools

16

ReSP: Tools

e debugger: Remote Stub for GNU/GDB

o uses GDB's Serial Remote Interface
e it defines custom commands to control the flow of time

@ profiler: produces statistics on the executed software
@ no instrumentation in the software

@ fault injector: simulates the system behaviour in presence of
faults

o follows the SoftWare-Implemented Hardware Fault Injection
approach

@ More tools are in the making, e.g. power analyzer

16

ReSP: Component Models
Easy Intergration of Any SystemC Module

@ Thanks to the automatic wrapper generation

@ Favors IP reusability

8/16

ReSP: Component Models
Easy Intergration of Any SystemC Module

@ Thanks to the automatic wrapper generation

@ Favors IP reusability

The following hardware component models are part of ReSP:

@ processors cores: ARM7TDMI, PowerPC 405, Leon2, MIPS
and Nios2

e written using the ArchC Architectural Description Language
@ interconnections: arbitrated bus

© memories: simple memories, Leon3 L1 cache, coherent
directory based caches

@ miscellaneous: timer and interrupt controller of the ARM PID
board, PC16x5x UART model

16

ReSP: Wrapper Generation

Boost.Python

C++ library

C++
C++
Module
C++ code Wrapper
C++ code
Normally Manually v
Generated
C++
Compiler

Compiled Output

(python extension module)

9/16

ReSP: Wrapper Generation

Boost.Python

C++ library

C++ XML
C++

Module GCCXML py++
C++ code Wrapper
C++ code

Y
C++
Compiler

Compiled Output
(python extension module)

9/16

ReSP: Wrapper Generation

IC++ XML
C++ _ -
Module GCCXML py++ Boost.Python
C++ code Wrapper C++ library
C++ code
C++
Compiler

Compiled Output
(python extension module)

16

ReSP: Wrapper Generation

Boost.Python

C++ library

C++ XML
C++
Module GCCXML py++
C++ code Wrapper
C++ code
C++
Compiler

Compiled Output
(python extension module)

16

ReSP: Wrapper Generation

Boost.Python

C++ library

C++ XML
C++

Module GCCXML py++
C++ code Wrapper
C++ code

Y
C++
Compiler

Compiled Output
(python extension module)

16

ReSP: Wrapper Generation

Boost.Python

C++ library

C++ XML
C++
Module GCCXML py++
C++ code Wrapper
C++ code
C++
Compiler

Compiled Output
(python extension module)

16

QOutline

© ReSP Performance

KTransactions/s

23007

21007

19007

17007

Analysis of Reflection Overhead |

[@ SystemC M SystemC+ReSP |

—2900

—2550

—2200

—1850

—1500

Transactions Instructions

Klnstructions/s

10/16

Analysis of Reflection Overhead Il

1.010020
1,01 1.007030

0.997

0.977

SpeedUp [ReSP/SystemC]

Transactions Processors

11/16

QOutline

@ Application Scenario: Using ReSP for Fault Analysis
@ Background
@ Hardened Code Example
@ Results

Using ReSP for Fault Analysis

Background

@ Reflective capabilities are used for implementing fault injection
facilities
e Single Event Upsets are simulated by modifying the models’
internal state

e Follows the SoftWare-Implemented Hardware Fault Injection
approach (SWIHFI)

e No code instrumentation is required

12 /16

Using ReSP for Fault Analysis
Background

@ Reflective capabilities are used for implementing fault injection
facilities
e Single Event Upsets are simulated by modifying the models’

internal state
e Follows the SoftWare-Implemented Hardware Fault Injection

approach (SWIHFI)
e No code instrumentation is required
@ Related Work:
o Classical approaches pursue fault injection by means of code

instrumentation
e Only a few works have exploited reflective programming but

they do not consider SystemC hardware models

12 /16

Using ReSP for Fault Analysis

Hardened Code Example

Original code

Modified Code

a = 3;

a0 = 3;

al = 3;

if (a0 != al)
error();

13 /16

Using ReSP for Fault Analysis

Results

@ Fault injection campaign carried out by injecting more than
10000 faults in a Leon2 processor

14 /16

Using ReSP for Fault Analysis

Results

@ Fault injection campaign carried out by injecting more than
10000 faults in a Leon2 processor

@ Experimental results:

Error
Application Register Faults No Error HW Detected SW Detected Not detected
Reg. Bank 2000 1787 51 152 10
ELPF PC Reg. 1000 775 12 207 6
Other Regs 600 591 0 9 0
Reg. Bank 2000 1742 85 154 19
FIR PC Reg. 1000 663 93 235 9
Other Regs 600 571 0 27 2
Reg. Bank 2000 1540 185 271 4
Kalman PC Reg. 1000 591 62 346 1
Other Regs 600 593 0 7 0
| TOTAL | 10800 | 8853 | 488 | 1408 | 51 |

The results are coherent to what presented in Combined software
and hardware techniques for the design of reliable IP
processors, Rebaudengo et Al.

14 /16

QOutline

© Conclusions
@ Future Work
o Wrap-Up

Conclusions: Future Work

@ Support for the TLM 2.0 Draft 2 standard

o Currently Draft 1 is used
o We expect significant improvements in simulation speed

15/16

Conclusions: Future Work

@ Support for the TLM 2.0 Draft 2 standard

o Currently Draft 1 is used
o We expect significant improvements in simulation speed

o Callback facilities

o The status of the models is monitored
e Actions are taken in correspondence of particular events

15/16

Conclusions: Future Work

@ Support for the TLM 2.0 Draft 2 standard

o Currently Draft 1 is used
o We expect significant improvements in simulation speed

o Callback facilities

o The status of the models is monitored
e Actions are taken in correspondence of particular events

@ Design Space Exploration algorithms
o Necessary for tuning complex MP-SoC

15/16

Conclusions: Wrap-Up

@ Virtual Platform targeted to Multi-Processor Systems-On-Chip

16 /16

Conclusions: Wrap-Up

@ Virtual Platform targeted to Multi-Processor Systems-On-Chip
@ Based on Python and SystemC with automatic wrapper
generation
e Python augments ReSP with Reflective Capabilities

o Reflection allows a non-intrusive visibility on all the simulated
elements

16 /16

Conclusions: Wrap-Up

@ Virtual Platform targeted to Multi-Processor Systems-On-Chip

@ Based on Python and SystemC with automatic wrapper
generation
e Python augments ReSP with Reflective Capabilities
o Reflection allows a non-intrusive visibility on all the simulated
elements

© No significant overhead due to Python

16 /16

Conclusions: Wrap-Up

@ Virtual Platform targeted to Multi-Processor Systems-On-Chip

@ Based on Python and SystemC with automatic wrapper
generation

e Python augments ReSP with Reflective Capabilities
o Reflection allows a non-intrusive visibility on all the simulated
elements

© No significant overhead due to Python

@ Fine grain control of the simulation

16/16

Conclusions: Wrap-Up

@ Virtual Platform targeted to Multi-Processor Systems-On-Chip

@ Based on Python and SystemC with automatic wrapper
generation

e Python augments ReSP with Reflective Capabilities
o Reflection allows a non-intrusive visibility on all the simulated
elements

© No significant overhead due to Python
@ Fine grain control of the simulation

@ Fault Injection case study demonstates the usefulness of the
technology

16 /16

THANK YOU

Any Questions?

For more details: http://www.resp-sim.org

http://www.resp-sim.org

Appendix

Experimental Session - |

Processor-1 Memory
Cache
Regi PSR block1
Reg2 block2 \

\ word1
Wrapper] word2
Wrapper 3
= word3
o word4
<
Processor-2 = word5
Cache / 2
Reg1 PSR block1 »
Reg? block2

Wrapper Wrapper
Wrapper Wrapper

We will use this architecture for software debugging

Experimental Session - |l

procl = arm7.arm7(’procl’)
mem = SimpleMemory32.SimpleMemory32(’mem’, 0x800000)
bus = pv_router32.pv_router32(’SimpleBus’, 2) #2 masters

manager . connectPortsForce (procl,
procl.DATA_MEM_port.memory_port, bus, bus.target_port[0])
manager . connectPortsForce (procl,
procl.PROG_MEM_port.memory_port, bus, bus.target_port[0])
manager . connectPortsForce (proc2,
proc2.DATA_MEM_port.memory_port, bus, bus.target_port[1])
manager . connectPortsForce (proc2,
proc2.PROG_MEM_port.memory_port, bus, bus.target_port[1])

manager . connectPortsForce(bus, bus.initiator_port, mem, mem.memPort)

bus.addBinding("mem.mem_SimpleMemPort", 0x0, 0x800000)

Experimental Session - |l

parser = Parser.Parser(’exampleApp.elf’)
procl.init (0, parser.getProgStart(),
parser.getDataStart(), parser.getProgDim())
proc2.init (1, parser.getProgStart(),
parser.getDataStart(), parser.getProgDim())
mem.loadApplication(parser.getProgData(),
parser.getDataStart (), parser.getProgDim())

interl = GDBProcStub32.arm7tdmiStub(procl)
stubl = GDBStub32.GDBStub32(interl, 1500)

procl.setGDBStub(stubl)

inter2 = GDBProcStub32.arm7tdmiStub(proc2)
stub2 = GDBStub32.GDBStub32(inter2, 1501)

proc2.setGDBStub(stub2)

Experimental Session - IlI

ve.1.3 - Politecnico di Milano, European Space Agency
This tool is distributed under the GPL License

Type to get the list of available commands

>>> load_architecture('architectures/test.py')
GDB: waiting for connections on port 1560

Experimental Session - IV

Connecting the debugger:

GNU gdb 6.7.1

(gdb) target remote localhost:1500
Examining and modifying the components’ status:

>>> hex(procl.RB.read(14))
0x£200

>>> procl.acp_pc.write(0x200)
>>> procl.totalCycles

1500

	Outline
	Introduction
	Overview
	A bit of history

	Reflective Simulation Platform
	Simulation Core
	Overall Structure
	Tools
	Component Models
	Wrapper Generation

	ReSP Performance
	Application Scenario: Using ReSP for Fault Analysis
	Background
	Hardened Code Example
	Results

	Conclusions
	Future Work
	Wrap-Up

	Thank You
	Appendix

