Experiences of Low Power Design Implementation and Verification

Shih-Hao Chen Global Unichip Corp. Hsinchu, Taiwan

2 Power Gating

Low Power Verification

5

3

Dynamic IR Prevention

1

Conclusion

Technology is Driven to Low Power

Force and Impact

- Application, cost, process technology driven
- Complexity, power density, leakage increase
- Trade-off: area, power, performance, reliability, cost, ...

Power Optimization

Should be achieved from various fields

 Software, architecture, logical design, physical implementation, IP/library support, process technology, ...

Power Gating

Off-chip control

- Take long time to wake-up

On-chip control

- Switch-able pad implementation needs extra I/O space
- Power switch implementation becomes more popular

MTCMOS Technique

- The most effective way to manage leakage
 Penalty
 - Incurs power by sleep transistors and have area penalty
 - Has performance degradation issue due to IR drop
 - Needs extra de-cap to reduce the power noise

Power Switch Planning

Determine switch allocation, power-up sequence

- Subject to: area, power, ramp-up time and peak current

Power Switch Assembly

Partition/Cluster switch cells in banks

- Peak current limit (max concurrence)
- Wake-up time limit (max depth)

Effect of Power-up Sequence

2,400 switch cells partitioned in 20 banks, and assembled in the same configuration (Domino Fashion)

4 root position: BL, BR, TL, TR

BL

TL

Power Switch Optimization

Sizing/Removal

Reordering

To reduce rush current and dynamic IR problems

Dynamic IR vs. Power-up Sequence

Verification is a Key to Success

Comprehensive low power verification

- Design quality check
- Electrical check, functional correctness, IR/EM analysis
- Dynamic IR

good decision? incomplete clock gating? missing isolation or shifter? incorrect power domain connection? power routing? incapable sleep control propagation? IR/EM analysis?

Enable Shifter

11

Dynamic IR Drop Affects Yield

Dynamic IR is critical at 90nm and below

- Timing variation becomes more voltage sensitive
- Increasing the power grid width is not efficient enough

It's not only speed degradation problem, but also cause chip failure !

Scan Mode Dynamic IR is Critical

Even worst in scan mode

- Delay is more sensitive to IR drop as technology shrinking
- Simulation-based approach is effort consuming
- Analysis at early stage is critical

Static Analysis

VDD: 0% ~ 0.75%

VDD: 17.5% ~ 18.7%

Dynamic IR Analysis

Traditional flow is inefficient

- Effort consuming to grab VCD pattern and timing window
- No enough space around hot spots (too late)
- May worsen leakage and yield (inefficient de-cap insertion)

Gain ~1% dynamic IR saving, but pay ~200K de-cap cells.

Dynamic IR Failure Prediction

Flip-flop density rule

- Cell padding is applied during CTS and timing opt.
- Dynamic-IR is controlled while maintaining timing
- De-cap cell insertion becomes more efficient

Dynamic IR Prevention Flow

Preliminary planning

- Power grid
- De-cap pre-insertion
- Power switch configuration
- Prediction, fixing

Power aware DFT

- Clock gating
- Location-based grouping
- Test clocks varying
- Power switch opt.
 - Sizing, removal, reordering

Conclusion

Power efficiency

- Compromise between different mechanisms
- Require good decision, comprehensive verification
- Power-gating is a promising leakage control
 - Challenge of verification among various sleep modes
 - Configuration with dynamic IR consideration
- Dynamic IR prevention flow improves yield
 - Flip-flop density check achieves a good quality
 - Fixing becomes much easier without timing degradation
 - Dynamic-IR is controlled during CTS and timing opt.

