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Technology Is Driven to Low Power

@ Force and Impact
— Application, cost, process technology driven
— Complexity, power density, leakage increase
— Trade-off: area, power, performance, reliability, cost, ...
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Power Optimization

@ Should be achieved from various fields
— Software, architecture, logical design, physical

Implementation, IP/library support, process technology, ...
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Power Gating

@ Off-chip control
— Take long time to wake-up

@ On-chip control
— Switch-able pad implementation needs extra 1/0 space
— Power switch implementation becomes more popular




MTCMQOS Technigue

® The most effective way to manage leakage

® Penalty
— Incurs power by sleep transistors and have area penalty
— Has performance degradation issue due to IR drop
— Needs extra de-cap to reduce the power noise
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Power Switch Planning

@ Determine switch allocation, power-up sequence
— Subject to: area, power, ramp-up time and peak current
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Current (A)
8.E-04

PMOS (Header)

7.E-04

6.E04 OWer-up Ramp-up time

5.E-04 , < . :
4E-04 _Saturation region Mutation  One-by-one

3.E-04 | Current (domino) (daisy chain)
2.E-04 1

<

1.E-04

1 trade=off between~ - :
0 01 02 03 04 05 06 07 08 09 1 Vds(V) peak current & ramp-up time

uppetr/lower bound of ramp-up time

0.E+00




Power Switch Assembly

@ Partition/Cluster switch cells in banks
— Peak current limit (max concurrence)
— Wake-up time limit (max depth)
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Effect of Power-up Sequence

DWer source

o | |
T

o

| BB [ -
by

':-."*F TS i
3k ol SR S, S

2,400 switch cells partitioned in 20 banks,
and assembled in the same configuration
(Domino Fashion)

R e
)
PR 5

4 root position: BL, BR, TL, TR




Power Switch Optimization

| Sizing/Removal

® Reordering
— To reduce rush current and dynamic IR problems
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Dynamic IR vs. Power-up Sequence
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Verification is a Key to Success

® Comprehensive low power verification
— Design quality check
— Electrical check, functional correctness, IR/EM analysis

— Dynamic IR
Multi-depths Sleep
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incorrect power domain
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Dynamic IR Drop Affects Yield

® Dynamic IR is critical at 90nm and below
— Timing variation becomes more voltage sensitive
— Increasing the power grid width is not efficient enough
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It's not only speed degradation problem, but also cause chip failure !




Scan Mode Dynamic IR is Critical

@ Even worst In scan mode
— Delay is more sensitive to IR drop as technology shrinking
— Simulation-based approach is effort consuming
— Analysis at early stage is critical
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Dynamic IR Analysis

@ Traditional flow is inefficient
— Effort consuming to grab VCD pattern and timing window

— No enough space around hot spots (too late)
— May worsen leakage and yield (inefficient de-cap insertion)
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Dynamic IR Failure Prediction

A Flip-flop density rule
— Cell padding is applied during CTS and timing opt.
— Dynamic-IR is controlled while maintaining timing
— De-cap cell insertion becomes more efficient

VCD-based Analysis Dynamic IR Prediction




Dynamic IR Prevention Flow

Preliminary

@ Preliminary planning Power:Planning
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Conclusion

@ Power efficiency
— Compromise between different mechanisms
— Require good decision, comprehensive verification

@ Power-gating is a promising leakage control
— Challenge of verification among various sleep modes
— Configuration with dynamic IR consideration

1 Dynamic IR prevention flow improves yield
— Flip-flop density check achieves a good quality

— Fixing becomes much easier without timing degradation
— Dynamic-IR is controlled during CTS and timing opt.







