Circuit Design using Stripe-Shaped PMELA TFT on Glass

K. Ikai¹, J. Kim¹, M. Ikeda¹·², K. Asada¹·²

1. Dept. of Electronic Engineering,
2. VLSI Design and Education Center (VDEC),
 University of Tokyo
Background

- **System-on-Glass (SOG)**
 - Integrate the peripheral functions on glass substrate

- **CPU on Glass**

- **Driver circuit**
 - NEC, LCD Technology, Nov. 2006

- **Audio on Glass**
 - Sharp, Sep. 2003

- **Supply circuit**
 - NEC, May 2003

- **Touch panel**
 - Toshiba Matsushita Display, Oct. 2006

- **System displays**
 - Toshiba Matsushita Display, Oct. 2006

- **light, portable**
 - Future
PMELA method

- Promising technique to realize SOG
 - Compatible with conventional TFT processes
 - Grow large Si grains with position control

- Large Si grains are formed periodically
 - Designers need to place TFTs on the areas
Main issues and targets

- Develop a design environment for **automatically placing TFTs periodically** on large Si grain areas
- Ground/parasitic capacitance modeling for post-layout simulation

<PMELA process>
Have to place TFTs periodically

<Glass substrate>
Smaller ground capacitances Than Si substrate
Placing TFTs periodically

- Large crystallized Si area: 32um pitch
 - Standard cell’s unit cell width are also designed as 32um
 - Poly for vertical, Metal 1 for horizontal wiring
 - Pins are placed above/below the Power/Gnd lines

- TFTs are successfully placed on the large crystallized area
Simulation vs Measurement results

- Assumed the field oxide is very thick
- VCOs’ measurement results
 - Error: < 70% (~1.5V), < 40% (~3V) (VDD=3V)
 - Averaged data: error is less than 15%
 - The developed simulation environment is enough accurate for digital circuit design
Our Design is presented at poster session 1D-8.

Thank you.