
A UML-Based Approach for
Heterogeneous IP Integration

Zhenxin SUN
Supervised by Prof. Wong Weng-Fai

A UML-Based Approach for Heterogeneous IP Integration

2ASP-DAC 2009 Yokohama

Outline

Motivation
Model design using UML
Wrapper Synthesis
Case studies
Experiment results
Conclusion and future works

A UML-Based Approach for Heterogeneous IP Integration

3

Background

IP (Intellectual Properties)
–Virtual Components with well predefined functionalities,
usage methods and tools to support the usage
IP Reuse
–2-3x benefit
–Design for reuse is expensive

Source of IP: Internal teams and third party providers

A UML-Based Approach for Heterogeneous IP Integration

4

Challenges

Incompatible bus protocols
–Major bus protocols are not compatible to each other
–Third party IP make the things works
High Cost of design exploration
–Design partitioning/displacement

Cumbersome
Error-prone

–Bus re-configuration is time-consuming
–Need to be done iteratively

A UML-Based Approach for Heterogeneous IP Integration

5

Challenges

Increasingly complexity
–Hundreds of IP in a design
–Different IP sources
Informal IP and bus definition
–Definitions are commonly Natural Languages & waveforms
–Inconsistencies

A UML-Based Approach for Heterogeneous IP Integration

6ASP-DAC 2009 Yokohama

Problem Description

A failure to perform the connection may be due to one of
two possible reasons:

– the interface protocol does not matched
– the SLports of one interface are not sufficient to drive the

other.
We are going to solve two types of compatible pairs:

– Type 1 compatible pair: There is a one-to-one
correspondence between the SLports of the two
interfaces.

– Type 2 compatible pair: The output SLport of one
interface can be made to drive the input SLport of the
other through some runtime transformation of its data.

A UML-Based Approach for Heterogeneous IP Integration

7

Proposals

Formalizing the interfaces using UML models
Capture wrapper configuration that are used to
customize IP cores
Auto-generator to produce the merging glue of IP to the
On-Chip-Buses
Plug-and-play to enable fast integration and testing
Using simulation for verification

A UML-Based Approach for Heterogeneous IP Integration

8ASP-DAC 2009 Yokohama

A UML-Based Approach for Heterogeneous IP Integration

9ASP-DAC 2009 Yokohama

Features

To ensure correctness and reusability, we use UML structural
and state diagrams to specify and formalize system interfaces.
This single model is used consistently throughout the entire design
process. It not only gives a system level view of the design but also
allows for reuse in future designs.

Automation is applied in every level of abstractions, and
between different environments. Code is generated from the same
source model, minimizing ambiguity.

Our framework supports both interface protocol customization
and glue logic generation, thereby maximizing IP integration.

All changes are applied at the higher level, and user will only
need to deal with the high level design decisions.

A UML-Based Approach for Heterogeneous IP Integration

Terminology

Interface
SLport
UMLport
Wrapper Port

A UML-Based Approach for Heterogeneous IP Integration

11ASP-DAC 2009 Yokohama

User Input

UML Structural diagrams
– Describe the component structure of a system
– Each component is treated as a black-box and modeled as

a class
UML behavioral diagrams

– Describe the interaction between the components
– Behaviors are modeled as states transitions associated

with the classes

A UML-Based Approach for Heterogeneous IP Integration

12ASP-DAC 2009 Yokohama

User Input

Step1: Formalize the IP interface using UML notations
Step2: Define the wrapper classes
Step3: Define behaviors of incompatible interfaces

A UML-Based Approach for Heterogeneous IP Integration

Interface Synthesis

Rhapsody 6 as UML
drawing tools

– Sbs file
Analyzer

– Analyze and construct
the wrapper models

Velocity engine
– Merge with the template

13ASP-DAC 2009 Yokohama

A UML-Based Approach for Heterogeneous IP Integration

Interface Synthesis

Communication group
– One master_wrapper and

one slave_wrapper
– A thread is used to

maintain the connection

14ASP-DAC 2009 Yokohama

A UML-Based Approach for Heterogeneous IP Integration

Interface Synthesis

15ASP-DAC 2009 Yokohama

while(true){
switch (state){
case IDLE: //in idle state
wait_until(Fast_IDCT_signal.read()=true);

//state is guarded by Fast_IDCT_signal
start.write(true); //drive driver port
state=INPUT_DATA; //change state

case INPUT_DATA:
addr=Fast_IDCT_addr.read();
for i from 1 to 8, j from 1 to 8

din.write(addr[j*8+i];
state=WAIT;

case WAIT:
wait_until(done.read()=true);
state=SEND_RESULTS;

case SEND_RESULTS:
for i from 1 to 8, j from 1 to 8

addr[j*8+i]=dout;
Fast_IDCT_ack.write(true);
state=IDLE;

}}

IDLE

SEND_RESULTS

WAIT

INPUT_DATA

[Fast_IDCT_Signal.read()=true]/
start.write(true)

[count=64][done.read()=true]

Fast_IDCT_ack.write(true)

A UML-Based Approach for Heterogeneous IP Integration

Mapping Rules between UML notations
and design properties

UML Notations System Properties
Parent Class Wrapper module

Name Name
UMLport Interface adapter
Subclasses IP cores

UMLPort of subclass Interface
Port name Name
port type Type
Interface type Direction
Stereotype Protocol
Port properties Driving signals
State chart Driving behaviors

Contract Attributes Signals
Name Name
Stereotype type
Tag Width

UMLport State Chart Adapter’s control code
States and transitions Finite state machine

16ASP-DAC 2009 Yokohama

A UML-Based Approach for Heterogeneous IP Integration

17ASP-DAC 2009 Yokohama

Case Studies: Simple Bus

Taking from SystemC open
source

– 1 kernel, 1 arbiter, 2
memory slaves and 2
masters

– Wrapped up the masters
Experiment results

– 2684 lines of original code
– 3743 lines of wrapped

code
– 24.3% of overhead

<<Wrapper>>
Master_non_blocking_wp

master_nb
read
write
get_status

bus_busy

master_b
burst_read

burst_write
finish_blocking_read
finish_blocking_write

<<Wrapper>>
Master_blocking_wp

bus_busy

simple_bus
read

finish_blocking_read
finshed_blocking_write

write
get_status

nb_bus_busy

burst_write

burst_read

blocking_bus_busy

fast_mem slow_mem arbiter

OCPSystemC
UMLports

OCP adapter
port

SystemC
UMLport

A UML-Based Approach for Heterogeneous IP Integration

18ASP-DAC 2009 Yokohama

Case Studies: Mpeg-2 Decoder

Mpeg-2 Decoder
IDCT versions

– F-IDCT
– R-IDCT
– Verilog-IDCT
– PCI-IDCT

A UML-Based Approach for Heterogeneous IP Integration

A UML-Based Approach for Heterogeneous IP Integration

20ASP-DAC 2009 Yokohama

A UML-Based Approach for Heterogeneous IP Integration

Case Studies: Mpeg-2 Decoder

21ASP-DAC 2009 Yokohama

Input Unwrapped
w/F-IDCT

Wrapped
w/F-IDCT

Extra
Overhead

short.m2v 0.412s 0.450s 9.22%
fball.m2v 154.886s 172.415s 11.32%
zoo.m2v 629.155s 730.5275s 16.11%
dhl.m2v 801.406s 932.31s 16.33%

Table 2 Simulation results of decoders with F-IDCT

Input Unwrappe
d w/R-
IDCT

Wrapped
w/R-IDCT

Extra
Overhead

short.m2v 0.422s 0.444s 5.21%
fball.m2v 162.84s 184.004s 13.00%
zoo.m2v 699.8335s 789.0175s 12.74%
dhl.m2v 910.759s 1024.9585s 12.54%

Table 3 Simulation results of decoders with R-IDCT

Table 1 Simulation result of decoders with F-IDCT

Table 1 Simulation result of decoders with R-IDCT

A UML-Based Approach for Heterogeneous IP Integration

22ASP-DAC 2009 Yokohama

A UML-Based Approach for Heterogeneous IP Integration

Experiment Results

Overhead is about 9%-16%
Overhead of the wrapping is not proportional to number
of wrappers
–Proportional to number of transaction passing through the
wrappers
–Wrapping components with less workload has less impact
on overall performance
–Trade off between configurability and performance

A UML-Based Approach for Heterogeneous IP Integration

24ASP-DAC 2009 Yokohama

Conclusions and Future works

We have presented a framework for integration of
heterogeneous and incompatible predefined IP-cores

We have enabled a auto-generation of protocol adapters
and glue logic from defined UML models

Our algorithm is tested under several environments
including SystemC, Verilog and FPGA modules.

Future works
– Cross platform design
– Template generation
– Design space exploration

A UML-Based Approach for Heterogeneous IP Integration

25ASP-DAC 2009 Yokohama

	A UML-Based Approach for Heterogeneous IP Integration
	Outline
	Background
	Challenges
	Challenges
	Problem Description
	Proposals
	Slide Number 8
	Features
	Terminology
	User Input
	User Input
	Interface Synthesis
	Interface Synthesis
	Interface Synthesis
	Mapping Rules between UML notations and design properties
	Case Studies: Simple Bus
	Case Studies: Mpeg-2 Decoder
	Slide Number 19
	Slide Number 20
	Case Studies: Mpeg-2 Decoder
	Slide Number 22
	Experiment Results
	Conclusions and Future works
	Slide Number 25

