
Accelerating Statistical Static
Timing Analysis Using

Graphics Processing Units
Kanupriya Gulati & Sunil P. Khatri

Department of ECE
Texas A&M University, College Station

Outline

Introduction
Technical Specifications of the GPU
CUDA Programming Model
Approach
Experimental Setup and Results
Conclusions

Outline

Introduction
Technical Specifications of the GPU
CUDA Programming Model
Approach
Experimental Setup and Results
Conclusions

Introduction
Static timing analysis (STA) is heavily used in VLSI
design to estimate circuit delay
Impact of process variations on circuit delay is increasing
Therefore, statistical STA (SSTA) was proposed

It includes the effect of variations while estimating circuit delay
Monte Carlo (MC) based SSTA accounts for variations
by

Generating N delay samples for each gate (random variable)
Executing STA for each sample
Aggregating results to generate full circuit delay under variations

MC based SSTA has several advantages (over Block
based SSTA)

High accuracy, simplicity and compatibility to fabrication line data
Main disadvantage is extremely high runtime cost

Introduction
We accelerate MC based SSTA using graphics
processing units (GPUs)
A GPU is essentially a commodity stream processor

Highly parallel
Very fast
SIMD (Single-Instruction, Multiple Data) operating paradigm

GPUs, owing to their massively parallel architecture,
have been used to accelerate several scientific
computations

Image/stream processing
Data compression
Numerical algorithms

LU decomposition, FFT etc

Introduction
We implemented our approach on the

NVIDIA GeForce 8800 GTX GPU
By careful engineering, we maximally harness the
GPU’s

Raw computational power and
Huge memory bandwidth

Used Compute Unified Device Architecture (CUDA)
framework

Open source GPU programming and interfacing tool
When using a single 8800 GTX GPU card

~260X speedup in MC based SSTA is obtained
Accounts for CPU processing and data transfer times as well

The SSTA runtimes are projected for a Quad GPU system
NVIDIA SLI technology allows 4 GPU devices on the same board:
~788X speedup is possible

Outline

Introduction
Technical Specifications of the GPU
CUDA Programming Model
Approach
Experimental Setup and Results
Conclusions

GeForce 8800 GTX Technical Specs.
367 GFLOPS peak performance

25-50 times of current high-end microprocessors
265 GFLOPS sustained for appropriate applications
Massively parallel, 128 cores

Partitioned into 16 Multiprocessors
Massively threaded, sustains 1000s of threads per
application
768 MB device memory
1.4 GHz clock frequency

CPU at 3.6 GHz
86.4 GB/sec memory bandwidth

CPU at 8 GB/sec front side bus
Multi-GPU servers available

SLI Quad high-end NVIDIA GPUs on a single motherboard
Also 8-GPU servers announced recently

Outline

Introduction
Technical Specifications of the GPU
CUDA Programming Model
Approach
Experimental Setup and Results
Conclusions

CUDA Programming Model
The GPU is viewed as a compute device that:

Is a coprocessor to the CPU or host
Has its own DRAM (device memory)
Runs many threads in parallel

Host Device

Device
Memory

Kernel Threads
(instances of

the kernel)PCIe

(CPU) (GPU)

CUDA Programming Model

Data-parallel portions of an application are executed on
the device in parallel on many threads

Kernel : code routine executed on GPU
Thread : instance of a kernel

Differences between GPU and CPU threads
GPU threads are lightweight

Very little creation overhead
GPU needs 1000s of threads to achieve full parallelism

Allows memory access latencies to be hidden
Multi-core CPUs require fewer threads, but the available
parallelism is lower

Thread Batching: Grids and Blocks
A kernel is executed as a grid
of thread blocks (aka blocks)

All threads within a block share
a portion of data memory
Threads/blocks have 1D/2D/3D
IDs

A thread block is a batch of
threads that can cooperate with
each other by:

Synchronizing their execution
For hazard-free common
memory accesses

Efficiently sharing data through
a low latency shared memory

Two threads from two different
blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Source : “NVIDIA CUDA Programming Guide” version 1.1

Device Memory Space Overview
Each thread has:

R/W per-thread registers (max.
8192 registers/MP)
R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Main means of communicating
data between host and device
Contents visible to all threads
Coalescing recommended

Read only per-grid constant
memory

Cached, visible to all threads
Read only per-grid texture
memory

Cached, visible to all threads
The host can R/W global, constant
and texture memories

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Source : “NVIDIA CUDA Programming Guide” version 1.1

Outline

Introduction
Technical Specifications of the GPU
CUDA Programming Model
Approach
Experimental Setup and Results
Conclusions

Approach - STA
STA at a gate

Over all inputs compute the MAX of
SUM of

Input arrival time for input i and
Pin-to-output (P-to-O) rising (or falling) delay from pin i
to output

For example, let
ATi

fall denote the arrival time of a falling signal at node i
ATi

rise denote the arrival time of a rising signal at node i
ATc

rise = MAX [(ATa
fall + MAX (D11→00 , D11→01)),

(ATb
fall + MAX (D11→00 , D11→10))]

MAX (D11→00, D11→01) denotes the P-to-O rising delay from a to c
MAX (D11→00, D11→10) denotes the P-to-O rising delay from b to c

a
c

b

Approach - STA
In order to implement STA at a gate, on the GPU

The P-to-O rising (or falling) delay from every input to output is
stored in a lookup table (LUT)

LUT stored in texture memory of GPU. Key advantages:
Cached memory: LUT data easily fits into available cache
No memory coalescing requirements
Efficient built-in texture fetching routines available in CUDA
Non-zero time taken to load texture memory, but cost amortized

For an n-input gate, do the following
Fetch n pin-to-output rising (or falling) delays from texture
memory

Using the gate type offset, pin number and falling/rising delay
information

n SUM computations (of the pin-to-output delay and input
arrival time)
n-1 MAX computations (since CUDA only supports 2 operand
MAX operations)

Approach - STA
typedef struct __align__(8){
int offset; //Gate type’s offset
float a, b, c, d; // Arrival times for the inputs
} threadData;

Approach - SSTA
SSTA at a gate

Need (µ , σ) for the n Gaussian distributions of the pin-to-output
rising and falling delay values for n inputs
Store (µ , σ) for every input in the LUT

As opposed to storing the nominal delay
Mersenne Twister (MT) pseudo random number generator is
used. It has the following advantages

Long period
Efficient use of memory
Good distribution properties
Easily parallelizable (in a SIMD paradigm)

The uniformly distributed random number sequences are then
transformed into the normal distribution N(0,1)

Using the Box-Muller transformations (BM)
Both algorithms, MT and BM are implemented as separate
kernels

Approach - SSTA

For a circuit, SSTA is performed topologically from inputs to outputs
Delays of gates at logic depth i are computed, and stored in global
memory
Gates at logic higher depths may use this data as their input arrival times

GPU performance is maximized by ensuring that:
Data dependency between threads issued in parallel is avoided
Threads issued in parallel execute same instruction, but on different data

Conforms to the SIMD architecture of GPUs
SIMD-based implementation for MT pseudorandom number
generator is used
Specific to G80 architecture

Texture Memory is used for storing LUT for µ and σ values
Global memory writes for level i gates (and reads for level i+1 gates)
are performed in a coalesced fashion

Can be easily extended for Statistical Timing Analysis with spatial
correlations

Existing approaches to implement principal component analysis (PCA) in
a SIMD fashion

Approach - SSTA

Outline

Introduction
Technical Specifications of the GPU
CUDA Programming Model
Approach
Experimental Setup and Results
Conclusions

Experiments
MC based SSTA on 8800 GTX runtimes compared to
a CPU based implementation

30 large IWLS and ITC benchmarks.
Monte Carlo analysis performed by using 64 K
samples for all 30 circuits.
CPU runtimes are computed

On 3.6 GHz, 3GB RAM Intel processor running Linux.
Using getrusage (system + user) time

GPU (wall clock) time computed using CUDA on
GeForce 8800 GTX

Experiments
GPU time includes data transfer time GPU ↔ CPU

CPU → GPU :
arrival time at each primary input
µ and σ for all pin-to-output delays of all gates

GPU → CPU:
64K delay values at each primary output

GPU times also include the time spent in the MT and
BM kernels, and loading texture memory
Computation results have been verified for correctness
For the SLI Quad system, the runtimes are obtained by
scaling the processing times only

Transfer times are included as well (not scaled)

Results

Using a single GPU, the speedup over CPU is ~260X
Projecting to SLI Quad shows speedup of ~788X

Recently an 8-GPU NVIDIA Tesla server has been announced
Block based SSTA can achieve ~500X [Le et al DAC 04] speedup
over MC based SSTA

However, they report a 2% error compared to MC based SSTA

788.014258.994Avg. (30 Ckts.)
89.174272.1161891.8842.1216.952b15_1

974.323279.2982879.7652.95610.311b21

945.897276.9133466.7833.66512.519b22_1

::::::

549.517228.663802.9631.4613.512s13207

694.158250.3352889.9244.16311.544s38584

629.197241.3492731.6384.34111.318s35932

744.307256.570499.9810.6721.949s9234_1

Speedup
GPU SLI Quad

Runtime (s)
GPU SLI Quad CPU

Circuit

Outline

Introduction
Technical Specifications of the GPU
CUDA Programming Model
Approach
Experimental Setup and Results
Conclusions

Conclusions
STA is used in VLSI design flow to estimate circuit delay
Process variations are growing larger and less systematic
MC based SSTA accounts for variations, and has several
advantages like high accuracy and compatibility to data
obtained from the fab line
Main disadvantage is extremely high runtime cost
We accelerate MC based SSTA using graphics processing
units (GPUs)
By careful engineering, we maximally harness the GPU’s

Raw computational power and
Huge memory bandwidths

When using a Single 8800 GTX GPU
~260X speedup in MC based SSTA is obtained

The SSTA runtimes are projected on a Quad GPU system
~785X speedup is possible

Thank You!

