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Introduction
Static timing analysis (STA) is heavily used in VLSI 
design to estimate circuit delay 
Impact of process variations on circuit delay is increasing
Therefore, statistical STA (SSTA) was proposed

It includes the effect of variations while estimating circuit delay
Monte Carlo (MC) based SSTA accounts for variations 
by 

Generating N delay samples for each gate (random variable)
Executing STA for each sample
Aggregating results to generate full circuit delay under variations

MC based SSTA has several advantages (over Block 
based SSTA)

High accuracy, simplicity and compatibility to fabrication line data
Main disadvantage is extremely high runtime cost



Introduction
We accelerate MC based SSTA using graphics 
processing units (GPUs)
A GPU is essentially a commodity stream processor

Highly parallel 
Very fast
SIMD (Single-Instruction, Multiple Data) operating paradigm

GPUs, owing to their massively parallel architecture, 
have been used to accelerate several scientific 
computations

Image/stream processing
Data compression
Numerical algorithms

LU decomposition, FFT etc



Introduction
We implemented our approach on the 

NVIDIA GeForce 8800 GTX GPU
By careful engineering, we maximally harness the 
GPU’s

Raw computational power and
Huge memory bandwidth

Used Compute Unified Device Architecture (CUDA) 
framework

Open source GPU programming and interfacing tool
When using a single 8800 GTX GPU card

~260X speedup in MC based SSTA is obtained 
Accounts for CPU processing and data transfer times as well

The SSTA runtimes are projected for a Quad GPU system
NVIDIA SLI technology allows 4 GPU devices on the same board: 
~788X speedup is possible
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GeForce 8800 GTX Technical Specs.
367 GFLOPS  peak performance

25-50 times of current high-end microprocessors
265 GFLOPS sustained for appropriate applications
Massively parallel, 128 cores

Partitioned into 16 Multiprocessors
Massively threaded, sustains 1000s of threads per 
application
768 MB device memory
1.4 GHz clock frequency 

CPU at 3.6 GHz
86.4 GB/sec memory bandwidth 

CPU at 8 GB/sec front side bus
Multi-GPU servers available

SLI Quad high-end NVIDIA GPUs on a single motherboard
Also 8-GPU servers announced recently
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CUDA Programming Model
The GPU is viewed as a compute device that:

Is a coprocessor to the CPU or host
Has its own DRAM (device memory)
Runs many threads in parallel

Host Device

Device
Memory

Kernel Threads
(instances of 

the kernel)PCIe

(CPU) (GPU)



CUDA Programming Model

Data-parallel portions of an application are executed on 
the device in parallel on many threads

Kernel : code routine executed on GPU
Thread : instance of a kernel

Differences between GPU and CPU threads 
GPU threads are lightweight

Very little creation overhead
GPU needs 1000s of threads to achieve full parallelism

Allows memory access latencies to be hidden
Multi-core CPUs require fewer threads, but the available 
parallelism is lower 



Thread Batching: Grids and Blocks
A kernel is executed as a grid 
of thread blocks  (aka blocks)

All threads within a block share 
a portion of data memory
Threads/blocks have 1D/2D/3D 
IDs

A thread block is a batch of 
threads that can cooperate with 
each other by:

Synchronizing their execution
For hazard-free common 
memory accesses

Efficiently sharing data through 
a low latency shared memory

Two threads from two different 
blocks cannot cooperate

Host
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Source : “NVIDIA CUDA Programming Guide” version 1.1



Device Memory Space Overview
Each thread has:

R/W per-thread registers (max. 
8192 registers/MP)
R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Main means of communicating 
data between host and device
Contents visible to all threads
Coalescing recommended

Read only per-grid constant 
memory

Cached, visible to all threads
Read only per-grid texture 
memory

Cached, visible to all threads
The host can R/W global, constant
and texture memories

(Device) Grid
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Memory
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Memory
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Source : “NVIDIA CUDA Programming Guide” version 1.1
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Approach - STA
STA at a gate

Over all inputs compute the MAX of
SUM of 

Input arrival time for input i and 
Pin-to-output (P-to-O) rising (or falling) delay from pin i
to output

For example, let
ATi

fall denote the arrival time of a falling signal at node i
ATi

rise denote the arrival time of a rising signal at node i
ATc

rise = MAX [(ATa
fall + MAX (D11→00 , D11→01)), 

(ATb
fall + MAX (D11→00 , D11→10))]

MAX (D11→00, D11→01) denotes the P-to-O rising delay from a to c
MAX (D11→00, D11→10) denotes the P-to-O rising delay from b to c

a
c

b



Approach - STA
In order to implement STA at a gate, on the GPU

The P-to-O rising (or falling) delay from every input to output is 
stored in a lookup table (LUT)

LUT stored in texture memory of GPU. Key advantages:
Cached memory: LUT data easily fits into available cache
No memory coalescing requirements
Efficient built-in texture fetching routines available in CUDA
Non-zero time taken to load texture memory, but cost amortized 

For an n-input gate, do the following 
Fetch n pin-to-output rising (or falling) delays from texture 
memory

Using the gate type offset, pin number and falling/rising delay 
information

n SUM computations (of the pin-to-output delay and input 
arrival time) 
n-1 MAX computations (since CUDA only supports 2 operand 
MAX operations)



Approach - STA
typedef struct __align__(8){
int offset; //Gate type’s offset
float a, b, c, d; // Arrival times for the inputs
} threadData;



Approach - SSTA
SSTA at a gate

Need (µ , σ) for the n Gaussian distributions of the pin-to-output 
rising and falling delay values for n inputs 
Store (µ , σ) for every input in the LUT

As opposed to storing the nominal delay
Mersenne Twister (MT) pseudo random number generator is 
used. It has the following advantages

Long period
Efficient use of memory
Good distribution properties
Easily parallelizable (in a SIMD paradigm)

The uniformly distributed random number sequences are then 
transformed into the normal distribution N(0,1)

Using the Box-Muller transformations (BM)
Both algorithms, MT and BM are implemented as separate 
kernels



Approach - SSTA



For a circuit, SSTA is performed topologically from inputs to outputs
Delays of gates at logic depth i are computed, and stored in global 
memory
Gates at logic higher depths may use this data as their input arrival times

GPU performance is maximized by ensuring that:
Data dependency between threads issued in parallel is avoided
Threads issued in parallel execute same instruction, but on different data 

Conforms to the SIMD architecture of GPUs
SIMD-based implementation for MT pseudorandom number 
generator is used
Specific to G80 architecture

Texture Memory is used for storing LUT for µ and σ values
Global memory writes for level i gates (and reads for level i+1 gates) 
are performed in a coalesced fashion

Can be easily extended for Statistical Timing Analysis with spatial 
correlations

Existing approaches to implement principal component analysis (PCA) in 
a SIMD fashion 

Approach - SSTA
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Experiments
MC based SSTA on 8800 GTX runtimes compared to 
a CPU based implementation

30 large IWLS and ITC benchmarks.
Monte Carlo analysis performed by using 64 K 
samples for all 30 circuits. 
CPU runtimes are computed 

On 3.6 GHz, 3GB RAM Intel processor running Linux. 
Using getrusage (system + user) time

GPU (wall clock) time computed using CUDA on 
GeForce 8800 GTX 



Experiments
GPU time includes data transfer time GPU ↔ CPU 

CPU → GPU : 
arrival time at each primary input
µ and σ for all pin-to-output delays of all gates

GPU → CPU:
64K delay values at each primary output

GPU times also include the time spent in the MT and 
BM kernels, and loading texture memory 
Computation results have been verified for correctness
For the SLI Quad system, the runtimes are obtained by 
scaling the processing times only

Transfer times are included as well (not scaled)



Results

Using a single GPU, the speedup over CPU is ~260X
Projecting to SLI Quad shows speedup of ~788X

Recently an 8-GPU NVIDIA Tesla server has been announced
Block based SSTA can achieve ~500X  [Le et al DAC 04] speedup 
over MC based SSTA

However, they report a 2% error compared to MC based SSTA

788.014258.994Avg. (30 Ckts.) 
89.174272.1161891.8842.1216.952b15_1

974.323279.2982879.7652.95610.311b21

945.897276.9133466.7833.66512.519b22_1

::::::

549.517228.663802.9631.4613.512s13207

694.158250.3352889.9244.16311.544s38584

629.197241.3492731.6384.34111.318s35932

744.307256.570499.9810.6721.949s9234_1

Speedup
GPU            SLI Quad

Runtime (s)
GPU       SLI Quad         CPU 

Circuit
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Conclusions
STA is used in VLSI design flow to estimate circuit delay 
Process variations are growing larger and less systematic
MC based SSTA accounts for variations, and has several 
advantages like high accuracy and compatibility to data 
obtained from the fab line
Main disadvantage is extremely high runtime cost 
We accelerate MC based SSTA using graphics processing 
units (GPUs)
By careful engineering, we maximally harness the GPU’s

Raw computational power and
Huge memory bandwidths

When using a Single 8800 GTX GPU
~260X speedup in MC based SSTA is obtained

The SSTA runtimes are projected on a Quad GPU system
~785X speedup is possible



Thank You!


