Accelerating Statistical Static Timing Analysis Using Graphics Processing Units

Kanupriya Gulati & Sunil P. Khatri Department of ECE Texas A&M University, College Station

- Introduction
- Technical Specifications of the GPU
- CUDA Programming Model
- Approach
- Experimental Setup and Results
- Conclusions

Introduction

- Technical Specifications of the GPU
- CUDA Programming Model
- Approach
- Experimental Setup and Results
- Conclusions

Introduction

- Static timing analysis (STA) is heavily used in VLSI design to estimate circuit delay
- Impact of process variations on circuit delay is increasing
- Therefore, statistical STA (SSTA) was proposed
 - It includes the effect of variations while estimating circuit delay
- Monte Carlo (MC) based SSTA accounts for variations by
 - Generating N delay samples for each gate (random variable)
 - Executing STA for each sample
 - Aggregating results to generate full circuit delay under variations
- MC based SSTA has several advantages (over Block based SSTA)
 - High accuracy, simplicity and compatibility to fabrication line data
- Main disadvantage is extremely high runtime cost

Introduction

 We accelerate MC based SSTA using graphics processing units (GPUs)

A GPU is essentially a commodity stream processor

- Highly parallel
- Very fast
- SIMD (Single-Instruction, Multiple Data) operating paradigm

 GPUs, owing to their massively parallel architecture, have been used to accelerate several scientific computations

- Image/stream processing
- Data compression
- Numerical algorithms
 - LU decomposition, FFT etc

Introduction

- We implemented our approach on the
 - NVIDIA GeForce 8800 GTX GPU
- By careful engineering, we maximally harness the GPU's
 - Raw computational power and
 - Huge memory bandwidth
- Used Compute Unified Device Architecture (CUDA) framework
 - Open source GPU programming and interfacing tool
- When using a single 8800 GTX GPU card
 - ~260X speedup in MC based SSTA is obtained
 - Accounts for CPU processing and data transfer times as well
- The SSTA runtimes are projected for a Quad GPU system
 - NVIDIA SLI technology allows 4 GPU devices on the same board: ~788X speedup is possible

Introduction

- Technical Specifications of the GPU
 - CUDA Programming Model
 - Approach
 - Experimental Setup and Results
 - Conclusions

GeForce 8800 GTX Technical Specs.

- 367 GFLOPS peak performance
 - 25-50 times of current high-end microprocessors

265 GFLOPS sustained for appropriate applications

- Massively parallel, 128 cores
 - Partitioned into 16 Multiprocessors
- Massively threaded, sustains 1000s of threads per application
- 768 MB device memory
- 1.4 GHz clock frequency
 CPU at 3.6 GHz
- 86.4 GB/sec memory bandwidth
 - CPU at 8 GB/sec front side bus
- Multi-GPU servers available
 - SLI Quad high-end NVIDIA GPUs on a single motherboard
 - Also 8-GPU servers announced recently

- Introduction
- Technical Specifications of the GPU
- CUDA Programming Model
 - Approach
 - Experimental Setup and Results
 - Conclusions

CUDA Programming Model

The GPU is viewed as a compute device that:

- Is a coprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel

CUDA Programming Model

 Data-parallel portions of an application are executed on the device in parallel on many threads

- Kernel : code routine executed on GPU
- Thread : instance of a kernel
- Differences between GPU and CPU threads
 - GPU threads are lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads to achieve full parallelism
 - Allows memory access latencies to be hidden
 - Multi-core CPUs require fewer threads, but the available parallelism is lower

Thread Batching: Grids and Blocks

A kernel is executed as a grid of thread blocks (aka blocks)

- All threads within a block share a portion of data memory
- Threads/blocks have 1D/2D/3D IDs
- A thread block is a batch of threads that can cooperate with each other by:

- Synchronizing their execution
 - For hazard-free common memory accesses
- Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate

Source : "NVIDIA CUDA Programming Guide" version 1.1

Device Memory Space Overview

Each thread has:

- R/W per-thread registers (max. 8192 registers/MP)
- R/W per-thread local memory
- R/W per-block shared memory
- R/W per-grid global memory
 - Main means of communicating data between host and device
 - Contents visible to all threads
 - Coalescing recommended
- Read only per-grid constant memory
 - Cached, visible to all threads
- Read only per-grid texture memory
 - Cached, visible to all threads
- The host can R/W global, constant and texture memories

- Introduction
- Technical Specifications of the GPU
- CUDA Programming Model
- Approach
 - Experimental Setup and Results
 - Conclusions

Approach - STA

STA at a gate

- Over all inputs compute the MAX of
 - SUM of
 - Input arrival time for input i and
 - Pin-to-output (P-to-O) rising (or falling) delay from pin i to output

$$a$$
 b c

For example, let

■ AT_i^{fall} denote the arrival time of a falling signal at node i ■ AT_i^{rise} denote the arrival time of a rising signal at node i $AT_c^{rise} = MAX [(AT_a^{fall} + MAX (D_{11 \rightarrow 00}, D_{11 \rightarrow 01})), (AT_b^{fall} + MAX (D_{11 \rightarrow 00}, D_{11 \rightarrow 10}))]$

MAX ($D_{11\rightarrow00}$, $D_{11\rightarrow01}$) denotes the P-to-O rising delay from *a* to *c* MAX ($D_{11\rightarrow00}$, $D_{11\rightarrow10}$) denotes the P-to-O rising delay from *b* to *c*

Approach - STA

In order to implement STA at a gate, on the GPU

- The P-to-O rising (or falling) delay from every input to output is stored in a lookup table (LUT)
 - LUT stored in texture memory of GPU. Key advantages:
 - Cached memory: LUT data easily fits into available cache
 - No memory coalescing requirements
 - Efficient built-in texture fetching routines available in CUDA
 - Non-zero time taken to load texture memory, but cost amortized
- For an *n*-input gate, do the following
 - Fetch n pin-to-output rising (or falling) delays from texture memory
 - Using the gate type offset, pin number and falling/rising delay information
 - *n SUM computations* (of the pin-to-output delay and input arrival time)
 - n-1 MAX computations (since CUDA only supports 2 operand MAX operations)

Approach - STA

typedef struct __align__(8){
int offset; //Gate type's offset
float a, b, c, d; // Arrival times for the inputs
} threadData;

Algorithm 1 Pseudocode of the kernel for rising output STA for inverting gate

 $static_timing_kernel(threadData * MEM, float * DEL) \{ t_x = my_thread_id \\ threadData Data = MEM[t_x] \\ p2pdelay_a = tex1D(LUT, MEM[t_x].offset + 2 \times 0); \\ p2pdelay_b = tex1D(LUT, MEM[t_x].offset + 2 \times 1); \\ p2pdelay_c = tex1D(LUT, MEM[t_x].offset + 2 \times 2); \\ p2pdelay_d = tex1D(LUT, MEM[t_x].offset + 2 \times 3); \\ LAT = fmaxf(MEM[t_x].a + p2pdelay_a, MEM[t_x].b + p2pdelay_b] \\ LAT = fmaxf(LAT, MEM[t_x].c + p2pdelay_c); \\ DEL[t_x] = fmaxf(LAT, MEM[t_x].d + p2pdelay_d); \\ \}$

Approach - SSTA

SSTA at a gate

- Need (μ, σ) for the *n* Gaussian distributions of the pin-to-output rising and falling delay values for *n* inputs
- Store (μ, σ) for every input in the LUT
 - As opposed to storing the nominal delay
- Mersenne Twister (MT) pseudo random number generator is used. It has the following advantages
 - Long period
 - Efficient use of memory
 - Good distribution properties
 - Easily parallelizable (in a SIMD paradigm)
- The uniformly distributed random number sequences are then transformed into the normal distribution N(0,1)

Using the Box-Muller transformations (BM)

 Both algorithms, MT and BM are implemented as separate kernels

Approach - SSTA

Algorithm 2 Pseudocode of the kernel for rising output SSTA

for inverting gate

 $statistical_static_timing_kernel(threadData*MEM, float*DEL)$ { $t_x = my_thread_id$ $threadData \ Data = MEM[t_x]$ $p2pdelay_a^{\mu} = tex1D(LUT^{\mu}, MEM[t_x].offset + 2 \times 0);$ $p2pdelay_a^{\sigma} = tex1D(LUT^{\sigma}, MEM[t_x]) \circ ffset + 2 \times 0);$ $p2pdelay_b^{\mu} = tex1D(LUT^{\mu}, MEM[t_x].offset + 2 \times 1);$ $p2pdelay_b^{\sigma} = tex1D(LUT^{\sigma}, MEM[t_x].offset + 2 \times 1);$ $p2pdelay_c^{\mu} = tex1D(LUT^{\mu}, MEM[t_x].offset + 2 \times 2);$ $p2pdelay_c^{\sigma} = tex1D(LUT^{\sigma}, MEM[t_x].offset + 2 \times 2);$ $p2pdelay_d^{\mu} = tex1D(LUT^{\mu}, MEM[t_x].offset + 2 \times 3);$ $p2pdelay_d^{\sigma} = tex1D(LUT^{\sigma}, MEM[t_x].offset + 2 \times 3);$ $p2p_a = p2pdelay_a^{\mu} - k_a \times p2pdelay_a^{\sigma}$; // k_a, k_b, k_c, k_d $p2p_b = p2pdelay_b^{\mu} + k_b \times p2pdelay_b^{\sigma}$; // are obtained by Mersenne $p2p_c = p2pdelay_c^{\mu} + k_c \times p2pdelay_c^{\sigma}$; // Twister followed by $p2p_d = p2pdelay_d^{\mu} + k_d \times p2pdelay_d^{\sigma}$; // Box-Muller transformations. $LAT = fmax f(MEM[t_x].a + p2p_a, MEM[t_x].b + p2p_b);$ $LAT = fmax f(LAT, MEM[t_x].c + p2p_c);$ $DEL[t_x] = fmaxf(LAT, MEM[t_x].d + p2p_d);$

Approach - SSTA

• For a circuit, SSTA is performed topologically from inputs to outputs

- Delays of gates at logic depth *i* are computed, and stored in global memory
- Gates at logic higher depths *may* use this data as their input arrival times
- GPU performance is maximized by ensuring that:
 - Data dependency between threads issued in parallel is avoided
 - Threads issued in parallel execute same instruction, but on different data
 Conforms to the SIMD architecture of GPUs
 - SIMD-based implementation for MT pseudorandom number generator is used
 - Specific to G80 architecture
 - **Texture Memory** is used for storing LUT for μ and σ values
 - Global memory writes for level *i* gates (and reads for level *i*+1 gates) are performed in a coalesced fashion
- Can be easily extended for Statistical Timing Analysis with spatial correlations
 - Existing approaches to implement principal component analysis (PCA) in a SIMD fashion

- Introduction
- Technical Specifications of the GPU
- CUDA Programming Model
- Approach
- Experimental Setup and Results
 - Conclusions

Experiments

MC based SSTA on 8800 GTX runtimes compared to a CPU based implementation 30 large IWLS and ITC benchmarks. Monte Carlo analysis performed by using 64 K samples for all 30 circuits. CPU runtimes are computed On 3.6 GHz, 3GB RAM Intel processor running Linux. Using getrusage (system + user) time GPU (wall clock) time computed using CUDA on GeForce 8800 GTX

Experiments

■ GPU time includes data transfer time GPU ↔ CPU

- CPU \rightarrow GPU :
 - arrival time at each primary input
 - μ and σ for all pin-to-output delays of all gates
- GPU \rightarrow CPU:
 - 64K delay values at each primary output
- GPU times also include the time spent in the MT and BM kernels, and loading texture memory
- Computation results have been verified for correctness
- For the SLI Quad system, the runtimes are obtained by scaling the processing times only

Transfer times are included as well (not scaled)

Results

Circuit	Runtime (s)			Speedup	
	GPU	SLI Quad	CPU	GPU	SLI Quad
s9234_1	1.949	0.672	499.981	256.570	744.307
s35932	11.318	4.341	2731.638	241.349	629.197
s38584	11.544	4.163	2889.924	250.335	694.158
s13207	3.512	1.461	802.963	228.663	549.517
:	:	:	:	:	:
b22_1	12.519	3.665	3466.783	276.913	945.897
b21	10.311	2.956	2879.765	279.298	974.323
b15_1	6.952	2.121	1891.884	272.116	89.174
Avg. (30 Ckts.)				258.994	788.014

Using a single GPU, the speedup over CPU is ~260X

- Projecting to SLI Quad shows speedup of ~788X
 - Recently an 8-GPU NVIDIA Tesla server has been announced
- Block based SSTA can achieve ~500X [Le et al DAC 04] speedup over MC based SSTA

However, they report a 2% error compared to MC based SSTA

- Introduction
- Technical Specifications of the GPU
- CUDA Programming Model
- Approach
- Experimental Setup and Results
- Conclusions

Conclusions

- STA is used in VLSI design flow to estimate circuit delay
- Process variations are growing larger and less systematic
- MC based SSTA accounts for variations, and has several advantages like high accuracy and compatibility to data obtained from the fab line
- Main disadvantage is extremely high runtime cost
- We accelerate MC based SSTA using graphics processing units (GPUs)
- By careful engineering, we maximally harness the GPU's
 - Raw computational power and
 - Huge memory bandwidths
- When using a Single 8800 GTX GPU
 - ~260X speedup in MC based SSTA is obtained
- The SSTA runtimes are projected on a Quad GPU system
 - ~785X speedup is possible

Thank You!