
Hardware-dependent Software
Synthesis for Many-Core Embedded

Systems

Samar Abdi, Gunar Schirner, Ines Viskic, Hansu Cho,
Yonghyun Hwang, Lochi Yu, Daniel Gajski

Presenter: Samar Abdi

Center for Embedded Computer Systems
University of California, Irvine

http://www.cecs.uci.edu

Copyright ©2009, CECS 2

Outline

• Motivation for many-core HdS synthesis

• Model based approach to system synthesis

• HdS synthesis for TLM (Front-End)

• HdS synthesis for PCAM (Back-End)

• Embedded System Environment (ESE)

• Experimental results for MP3 decoder example

• Conclusion

Copyright ©2009, CECS 3

System Design Trend

HW Dev.

Pr
es

en
t

Platform Platform
Modeling

Virtual
Platform Board

+ BSP

HdS Dev.

App. Dev.

VP

Prototype

Pa
st

Platform HW Dev. HdS Dev. App. Dev. PrototypeBoard
+ BSP

Board

TLM
Gen. TLM

ASIC/
FPGA
Tools

Fu
tu

re

Board
+ BSP

HdS Gen.

HW Gen.
Prototype

Platform

C/C++

App. Dev.

Copyright ©2009, CECS 4

Motivation for Many-Core HdS Synthesis

• Multi-core and many-core HW platforms
Technology scaling is limited
Better throughput, lower power with parallel execution
Heterogeneous systems required for efficient execution

• Automatic HdS synthesis
Multipurpose, complex applications
Flexible HW platforms that vary across application domains
Short time to market

• Approach: Model based synthesis
Executable models at various abstraction levels
Formalized model semantics
Layered HdS structure

Copyright ©2009, CECS 5

Model Based Synthesis

• Benefits
Faster design/simulation/validation at higher abstraction
Early application development
Rapid design space exploration
Automatic synthesis
• reduces probability of error vs. manual implementation
• Increases designer productivity

• Challenges
Identifying the “right” abstraction levels
Formal model semantics at each abstraction level
Methods and tools for
• Application development
• SW/HW synthesis
• Model debugging and analysis

Copyright ©2009, CECS 6

Model Abstractions (with Respect to OSI)

Pin / Cycle Accurate Model

Transaction Level Model

Specification Model

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2b. Link + Stream

2a. Media Access Ctrl

2a. Protocol

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2b. Link + Stream

2a. Media Access Ctrl

2a. Protocol

1. Physical

Address lines
Data lines

Control lines

TLM

Spec

P/CAM

6

Copyright ©2009, CECS 7

System Synthesis Flow

System Definition

Component
Models Front End

Component
Libraries Back End

Application Platform

TLM

PCAM

mapping

ASIC
flow

FPGA
flow

Copyright ©2009, CECS 8

Front End Design Flow

System Definition

PE/RTOS
Models

Timing
Estimation

Bus/IF/Mem
Models TLM Generation

SystemC
Simulation

Application Platform

Timed Application

SystemC TTLM Metrics

Design
Optimization

mapping

Copyright ©2009, CECS 9

Outline

• Motivation for many-core HdS synthesis

• Model based approach to system synthesis

• HdS synthesis for TLM (Front-End)

• HdS synthesis for PCAM (Back-End)

• Embedded System Environment (ESE)

• Experimental results for MP3 decoder example

• Conclusion

Copyright ©2009, CECS 10

Application Model

v1

C
1

P1 P2

P3 P4

C2

10

• Application Spec Model: set of communicating processes
Executes on a simulation kernel (eg: SystemC) – No HdS
Process functionality defined using C/C++
Blocking channels and non-blocking variables

Copyright ©2009, CECS 11

Platform Architecture

Tr
an

sd
uc

er

CPU1 Mem

HW IP CPU2

A
rb

ite
r

Bus1 Bus2

11

• Netlist of SW processors, HW, Buses and interfaces

Copyright ©2009, CECS 12

System Definition = Platform + Application + Mapping

Input: System Definition

Tr
an

sd
uc

er

v1
C

1
P1 P2

CPU1 Mem

HW IP

P3

CPU2

P4

C2

A
rb

ite
r

Bus1 Bus2

12

Copyright ©2009, CECS 13

Computation Timing Estimation

• DFG scheduling to compute basic block delay
• RTOS model added for PEs with multiple processes

Timing
Estimation

Timed Process

Processor Model

wait(t1)

BB1

If

If
YN

YN

BB2 BB3

wait(t2) wait(t3)

Process CDFG

BB1

If

If
YN

YN

BB2 BB3

Copyright ©2009, CECS 14

Communication Timing Estimation

PE1
p1 p2

Tx1

PE3

Tx3

PE4

Application + Platform

Untimed Bus1

Protocol Model

Estim
ation Engine

Timed Bus1

Bus1

PE2

Bus2

Tx2

B
us

3

• Protocol model used to estimate synchronization,
arbitration and transfer

• Timing is annotated in bus channel and HdS model

Write() {
Get_Bus();
Transfer();
Release_Bus();

}

Write() {
Get_Bus();
wait (t1);
Transfer();
wait (t2);
Release_Bus();
wait (t3);

}

Copyright ©2009, CECS 15

Output: SystemC Timed TLM

Bus1

P1 P2

OS

C
PU

1
Mem

CPU2

P3

HW IP

Bus2

Transducer

TLM Semantics
• Application code sc_thread
• Processing element sc_module
• OS Model sc_module
• Bus sc_channel
• Memory Array inside sc_module
• Transducer FIFO channel+sc_process

P4

OS

Copyright ©2009, CECS 16

Transaction Level HdS Model

• Routing and packeting layers of HdS generated in TLM

Copyright ©2009, CECS 17

HdS Layers in TLM

i_SyncTransfer (D,S) {
 //B = Rt->FirstBus();
 //if (Rt->HasTx()) {
 //Tx=Rt->FirstTx();

 //} Tx request
 while (!B Sync(Ch));

 B Write(Addr[B,Ch], D, S);
} // end Send

i_Send (data, size) {
 sent = 0;

//Rt = Route(Ch);
 //pktSz=MinBuf(Rt);

do {

sent+=PktSz;
 } while (sent<size);
} // end i_Send

Routing and Packeting

Synchronization and Transfer
Model

SW Core
TLM

Sender
Process

i_Send (D,S);

 i_SyncTransfer
 (data[sent], pktSz);

B Write
 (Req[Tx, Ch], &S);

Tx

Bus B

Buffer

Req I/O

B

Write (Addr, DataPtr);

Read (Addr, DataPtr);

Sync (Channel_ID);

Bus Channel
Methods

• Bus channel model provides basic transaction services
• Synchronization and transfer is modeled in SW core

Copyright ©2009, CECS 18

TLM vs. Traditional Models

Time and accuracy trade off among different models

0 2sec 3~4 hrs 15~18hrs

Func. TLM

Exec. Time (MP3)

Accuracy

100%

~92%

~80%

Board

Timed TLM

ISM

PCAM

TLM: Transaction Level Model
ISM: Instruction Set Model

PCAM: Pin/Cycle Accurate Model

Copyright ©2009, CECS 19

Outline

• Motivation for many-core HdS synthesis

• Model based approach to system synthesis

• HdS synthesis for TLM (Front-End)

• HdS synthesis for PCAM (Back-End)

• Embedded System Environment (ESE)

• Experimental results for MP3 decoder example

• Conclusion

Copyright ©2009, CECS 20

Back End Synthesis Flow

SystemC TLM

C RTL
(Forte/NISC)

SW/RTOS
Library

Interface
Synthesis

SW
Synthesis

RTL IP
Library

Binary HW RTL IF RTL

OR
Bus

Library

Pin/Cycle Accurate Model (PCAM)
Generator

C/Verilog PCAM FPGA
Tools

Prototype

CA Sim.
Tools

Copyright ©2009, CECS 21

P4

OS
RTOS/
Driver

Synthesis

Compile

Cycle-Accurate Software Synthesis

Bus1

C
PU

1

HW IP CPU2

Bus2

Compile

RTOS/
Driver

Synthesis
HAL

RTOS

EXE
P2

OS
HAL Transducer

Program
P1

HAL

RTOS

EXE

Program

Copyright ©2009, CECS 22

Cycle-Accurate Hardware Synthesis

Bus1

C
PU

1
Mem

Processes in CHW IP (RTL)

Cycle-accurate
Synthesis

Bus2

CPU2

P3

Transducer

Copyright ©2009, CECS 23

Cycle-Accurate Interface Synthesis
CPU1 Mem

Transducer

HW IP

Interface Synthesis

CPU2

Arbiter

IC

Copyright ©2009, CECS 24

Pin/Cycle-Accurate Model (PCAM)

C
PU

1
Mem

Transducer

HW IP

Arbiter

HAL

RTOS

EXE

PCAM is input for fast prototyping
with FPGAs or implementation with

ASIC design tools

IC
Program

HAL

RTOS

EXE

Program

CPU2

Copyright ©2009, CECS 25

Pin and Cycle Accurate Model (PCAM)

App. Binary

IH IH ...

Instruction Set

Memory

Bus1

Bitstream Download
Bus2

Thread.
Lib.

IPC
Lib.

Mem.
Access

System
SW

stack
Synchronization
Data transfer

Routing,
Packeting

Transducer
RTL

 Channel API
CPU2
Model

 CPU1 Model

• Sync. and transfer layers of HdS generated in PCAM
• Application, System libs and HdS is cross-compiled

Copyright ©2009, CECS 26

HdS Layers in PCAM

i_SyncTransfer (D,S) {
 //B = Rt->FirstBus();
 //if (Rt->HasTx()) {
 //Tx=Rt->FirstTx();

 //} end Tx case
 while (!SyncFlag_Ch) {

SuspendProc(); }
 SyncFlag_Ch=0;
 //SA=low(AR(B,Ch));
 WrMem(SA, D, S);
} // end Send

i_Send (data, size) {
 sent = 0;

//Rt = GSRT(Ch);
 //pktSz=MinBuf(Rt);

do {

sent+=PktSz;
 } while (sent<size);
} // end i_Send

Routing and Packeting
Synchronization and Transfer

WrMem (A,D,S) {
 Written=0;

while (Written<S) {
 move (D+Written),
 (A+Written);
 Written+= WordSize;

 }
}

Memory Access

IH_Ch () {
 SyncFlag_Ch=1;
}

Interrupt Handler

SW Core

Sender
Process

i_Send (D,S);

 i_SyncTransfer
 (data[sent], pktSz);

WrMem
 (SendRB[Tx, Ch], S, WordSize);

TX

M
S InteruptBus B

• Synchronization and transfer models are replaced with
core, platform and application-specific HdS

Copyright ©2009, CECS 27

Summary of HdS Layers

• Routing
Statically decided for each channel
Transducer request code is generated if necessary

• Packeting
packet size is minimum buffer size in route
Message is divided into synchronized packet transactions

• Synchronization
Interrupt handlers and flags are generated per channel
Polling addresses and frequencies are selected per channel

• Data transfer
Addressing is defined per channel-per bus-segment
Core-specific read-write methods are created

Copyright ©2009, CECS 28

Outline

• Motivation for many-core HdS synthesis

• Model based approach to system synthesis

• HdS synthesis for TLM (Front-End)

• HdS synthesis for PCAM (Back-End)

• Embedded System Environment (ESE)

• Experimental results for MP3 decoder example

• Conclusion

Copyright ©2009, CECS 29

Embedded System Environment

System Definition

Component
Models ESE Front End

Component
Libraries ESE Back End

Application Platform

TLM

PCAM

C/C++, Graphical Capture

SystemC executable

C+RTL, FPGA Bitstream

Available for download at http://www.cecs.uci.edu/~ese

Copyright ©2009, CECS 30

MP3 Decoder Application

• Functional block diagram (major blocks only)

• Application features
• 12K lines of C code
• IMDCT and DCT are compute intensive

• Candidates for HW implementation
• Left channel and right channel are data independent

• Concurrent execution possible

Copyright ©2009, CECS 31

Platform 1: SW + 1DCT

OPB Bus

OPB
timer

DH Bus

Memory

Left
DCT

PCM

Left
DCT

Left
IMDCT

Right
DCT

Right
IMDCT

Alias
Red.

Alias
Red.

Huff.
Dec.

Transducer

Microblaze

Copyright ©2009, CECS 32

Platform 2: SW + 2DCT

OPB Bus

OPB
timer

DH Bus

Left
DCT

Memory

Right
DCT

PCM

Left
DCT

Left
IMDCT

Right
DCT

Right
IMDCT

Alias
Red.

Alias
Red.

Huff.
Dec.

Transducer

Microblaze

Copyright ©2009, CECS 33

Platform 3: SW + 2IMDCT

OPB Bus

OPB
timer

DH Bus

Left
IMDCT

Memory

Right
IMDCT

PCM

Left
DCT

Left
IMDCT

Right
DCT

Right
IMDCT

Alias
Red.

Alias
Red.

Huff.
Dec.

Transducer

Microblaze

Copyright ©2009, CECS 34

Platform 4: SW + 2DCT + 2IMDCT

PCM

Left
DCT

Left
IMDCT

Right
DCT

Right
IMDCT

Alias
Red.

Alias
Red.

Huff.
Dec.

Copyright ©2009, CECS 35

ESE System Specification

Copyright ©2009, CECS 36

ESE TLM Simulation

Copyright ©2009, CECS 37

ESE Generated PCAM

Copyright ©2009, CECS 38

ESE Generated HdS Code

Copyright ©2009, CECS 39

PCAM Prototyping and Execution

Copyright ©2009, CECS 40

Manual vs synthesized HdS

• Synthesized HdS is marginally larger than manual code, with
identical performance

• Manual development time
Platform design (5 hours), HdS implementation (2-4 hours vs. <1 sec)
Overall development time savings of 33% on average

• Higher productivity gain for more complex examples

Manual HdS
Coding

Automatic
HdS

Synthesis

Copyright ©2009, CECS 41

Conclusion

We presented a model based design methodology which:
supports HdS synthesis for heterogeneous many-core platforms
contains well defined system models at 3 abstraction levels
Supported by ESE toolset , available for free download

Results of HdS synthesis for MP3 decoder example:
Over 30% reduction in overall design time
Code quality comparable to manual implementation

Future work:
Extend design framework with to security oriented application models
Provide support for platform templates for real-time architectures

Copyright ©2009, CECS 42

Thank You
Visit http://www.cecs.uci.edu/~ese

