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Motivation for Many-Core HdS Synthesis

• Multi-core and many-core HW platforms
Technology scaling is limited
Better throughput, lower power with parallel execution
Heterogeneous systems required for efficient execution

• Automatic HdS synthesis
Multipurpose, complex applications
Flexible HW platforms that vary across application domains
Short time to market

• Approach: Model based synthesis
Executable models at various abstraction levels
Formalized model semantics
Layered HdS structure
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Model Based Synthesis

• Benefits
Faster design/simulation/validation at higher abstraction 
Early application development 
Rapid design space exploration 
Automatic synthesis
• reduces probability of error vs. manual implementation
• Increases designer productivity 

• Challenges
Identifying the “right” abstraction levels
Formal model semantics  at each abstraction level
Methods and tools for
• Application development
• SW/HW synthesis
• Model debugging and analysis



Copyright ©2009, CECS 6

Model Abstractions (with Respect to OSI)
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System Synthesis Flow
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Front End Design Flow
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• Application Spec Model: set of communicating processes
Executes on a simulation kernel (eg: SystemC) – No HdS
Process functionality defined using C/C++
Blocking channels and non-blocking variables
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• Netlist of SW processors, HW, Buses and interfaces
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System Definition = Platform + Application + Mapping
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Computation Timing Estimation

• DFG scheduling to compute basic block delay
• RTOS model added for PEs with multiple processes
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Communication Timing Estimation
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• Protocol model used to estimate synchronization, 
arbitration and transfer

• Timing is annotated in bus channel and HdS model

Write( ) {
Get_Bus( );
Transfer( );
Release_Bus( );

}

Write( ) {
Get_Bus( );
wait (t1); 
Transfer( );
wait (t2);
Release_Bus( );
wait (t3);

}
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Output: SystemC Timed TLM
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• Application code sc_thread
• Processing element sc_module
• OS Model sc_module
• Bus sc_channel
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• Transducer FIFO channel+sc_process
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Transaction Level HdS Model

• Routing and packeting layers of HdS generated in TLM
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HdS Layers in TLM

i_SyncTransfer (D,S) {
  //B = Rt->FirstBus();
  //if (Rt->HasTx()) {
      //Tx=Rt->FirstTx();

  //} Tx request
  while (!B Sync(Ch));

    B  Write(Addr[B,Ch], D, S);
} // end Send

i_Send (data, size) {
  sent = 0;

//Rt = Route(Ch);
  //pktSz=MinBuf(Rt);

do {

sent+=PktSz;
  } while (sent<size);
} // end i_Send

Routing and Packeting

Synchronization and Transfer
Model

SW Core
TLM

Sender
Process

i_Send (D,S);

 i_SyncTransfer
  (data[sent], pktSz);

B  Write
   (Req[Tx, Ch], &S);

Tx

Bus B

Buffer

Req I/O

B

Write (Addr, DataPtr);

Read (Addr, DataPtr);

Sync (Channel_ID);

Bus Channel
Methods

• Bus channel model provides basic transaction services
• Synchronization and transfer is modeled in SW core
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TLM vs. Traditional Models

Time and accuracy trade off among different models

0 2sec 3~4 hrs 15~18hrs

Func. TLM

Exec. Time (MP3) 

Accuracy

100%

~92%

~80%

Board

Timed TLM

ISM

PCAM

TLM: Transaction Level Model
ISM: Instruction Set Model

PCAM: Pin/Cycle Accurate Model
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Back End Synthesis Flow
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Cycle-Accurate Hardware Synthesis
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Cycle-Accurate Interface Synthesis
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Pin/Cycle-Accurate Model (PCAM)
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Pin and Cycle Accurate Model (PCAM)
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• Sync. and transfer layers of HdS generated in PCAM
• Application, System libs and HdS is cross-compiled
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HdS Layers in PCAM

i_SyncTransfer (D,S) {
  //B = Rt->FirstBus();
  //if (Rt->HasTx()) {
      //Tx=Rt->FirstTx();

  //} end Tx case
  while (!SyncFlag_Ch) {

SuspendProc(); }
    SyncFlag_Ch=0;
    //SA=low(AR(B,Ch));
    WrMem(SA, D, S);
} // end Send

i_Send (data, size) {
  sent = 0;

//Rt = GSRT(Ch);
  //pktSz=MinBuf(Rt);

do {

sent+=PktSz;
  } while (sent<size);
} // end i_Send

Routing and Packeting
Synchronization and Transfer

WrMem (A,D,S) {
  Written=0;

while (Written<S) {
     move (D+Written),
               (A+Written);
     Written+= WordSize;

 }
}

Memory Access

IH_Ch () {
  SyncFlag_Ch=1;
}

Interrupt Handler

SW Core

Sender
Process

i_Send (D,S);

 i_SyncTransfer
  (data[sent], pktSz);

WrMem
   (SendRB[Tx, Ch], S, WordSize);

TX

M
S InteruptBus B

• Synchronization and transfer models are replaced with 
core, platform and application-specific HdS
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Summary of HdS Layers

• Routing
Statically decided for each channel
Transducer request code is generated if necessary

• Packeting
packet size is minimum buffer size in route
Message is divided into synchronized packet transactions

• Synchronization
Interrupt handlers and flags are generated per channel
Polling addresses and frequencies are selected per channel

• Data transfer
Addressing is defined per channel-per bus-segment
Core-specific read-write methods are created
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Embedded System Environment

System Definition

Component
Models ESE Front End

Component
Libraries ESE Back End

Application Platform

TLM

PCAM

C/C++, Graphical Capture

SystemC executable

C+RTL, FPGA Bitstream

Available for download at http://www.cecs.uci.edu/~ese
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MP3 Decoder Application

• Functional block diagram (major blocks only)

• Application features
• 12K lines of C code
• IMDCT and DCT are compute intensive 

• Candidates for HW implementation
• Left channel and right channel are data independent

• Concurrent execution possible
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Platform 2: SW + 2DCT
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Platform 3: SW + 2IMDCT

OPB Bus

OPB
timer

DH Bus

Left
IMDCT

Memory

Right
IMDCT

PCM

Left
DCT

Left
IMDCT

Right
DCT

Right
IMDCT

Alias
Red.

Alias
Red.

Huff.
Dec.

Transducer

Microblaze



Copyright ©2009, CECS 34

Platform 4: SW + 2DCT + 2IMDCT
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ESE System Specification
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ESE TLM Simulation
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ESE Generated PCAM
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ESE Generated HdS Code
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PCAM Prototyping and Execution
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Manual vs synthesized HdS

• Synthesized HdS is marginally larger than manual code, with 
identical performance

• Manual development time
Platform design (5 hours), HdS implementation (2-4 hours vs. <1 sec) 
Overall development time savings of 33% on average

• Higher productivity gain for more complex examples

Manual HdS 
Coding

Automatic 
HdS 

Synthesis
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Conclusion

We presented a model based design methodology which:
supports HdS synthesis for heterogeneous many-core platforms
contains well defined system models at 3 abstraction levels 
Supported by ESE toolset , available for free download

Results of HdS synthesis for MP3 decoder example: 
Over 30% reduction in overall design time
Code quality comparable to manual implementation

Future work:
Extend design framework with to security oriented application models 
Provide support for platform templates for real-time architectures 
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Thank You
Visit http://www.cecs.uci.edu/~ese


