Thermal-aware Post Compilation for VLIW Architectures

Wen-Wen Hsieh and TingTing Hwang

National Tsing Hua University, Taiwan

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

Introduction (1/2)

- Transistor density and power consumption have grown rapidly.
 - → Serious heat dissipation problem
- High temperature induces undesirable effects.
 - Low reliability
 - Low performance
 - High cooling costs

Introduction(2/2)

- A thermal management method needs to be developed.
 - To reduce hotspots
 - To balance the temperature distribution

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

Temperature Distribution

Register File Architecture

enable signal

Conventional Register File

Sub-bank Register File

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

The Proposed Method

- A static thermal management technique at compiler level.
- Target at VLIW architecture.

- We propose two techniques.
 - Register binding
 - → balance the temperature of register file
 - Forwarding method
 - > reduce the access count of register file

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

Register Binding - Simple Binding

 $U1_{Temp} > U2_{Temp} = U3_{Temp} > U4_{Temp}$

U1		U2			
	REG ₁	REG ₂	REG ₃	REG ₄	
		U3		U4	

Binding order:

 $REG_1 \rightarrow REG_1 \rightarrow REG_1 \rightarrow REG_1$

Hotspot: REG₁

Register Binding - Round-Robin-Like Binding

$$U1_{Temp} > U2_{Temp} = U3_{Temp} > U4_{Temp}$$

U1		U2			
	REG ₁	REG ₂	REG ₃	REG ₄	
		U3		U4	

Binding order:

 $REG_1 \rightarrow REG_2 \rightarrow REG_3 \rightarrow REG_4$

Hotspot: REG₁ & REG₂

Register Binding – Floorplan-Aware Binding

$$U1_{Temp} > U2_{Temp} = U3_{Temp} > U4_{Temp}$$

U1		U2			
	REG ₁	REG ₂	REG ₃	REG ₄	
		U3		U4	

Binding order:

 $REG_4 \rightarrow REG_2 \rightarrow REG_3 \rightarrow REG_1$

Temperature Balance!!

Register Binding

- Spatial information
 - Floorplan
 - location of every unit
- Temporal information
 - Control flow graph (CFG)
 - program flow
 - Temperature trace file
 - temperature of every unit

Penalty Function

- Determine whether a sub-bank register file is selected for binding or not.
- Apply Penalty to every sub-bank register.
- Bind the target live range to the bank with lowest penalty.

Penalty(REG_i) = α x proifling penalty(REG_i) + $(1-\alpha)$ x history penalty(REGi) $0 < \alpha < 1$

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

Forwarding Method - Motivation

• The forwarding unit exists in a pipeline architecture.

 Useless data is still read from register file when forwarding occurs.

Forwarding Method – Main Idea

- Forwarding condition is detected at compile time and encoded into instructions.
- Sub-bank register file is determined to be turned off or not at run time.
- A Forwarding-aware Scheduling Algorithm is proposed to allow more operand-forwarding.

The Modified Bundle Format

Flag encoding	Forwarding condition
000	no forwarding occurs
001	Inst ₀ , 1 st source register
010	Inst ₁ , 1 st source register
011	Inst ₂ , 1 st source register
100	Conflict
101	Inst ₀ , 2 nd source register
110	Inst ₁ , 2 nd source register
111	Inst ₂ , 2 nd source register

The Modified Datapath

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

- Introduction
- Motivation
- The Proposed Methods
 - Binding Method
 - Forwarding Method
- Experimental Results
- Conclusions

Conclusions

 Binding algorithm and forwarding method are proposed to reduce the hotspot of register file.

• The peak temperature reduction reach 7.89°C in the best case and 7.22°C in average.

Profiling_penalty

 To represent the thermal relationship between register file and its adjacent units.

U1 U2 U3

$$\downarrow w_1 \rightarrow \leftarrow w_2 \rightarrow \leftarrow w_3 \rightarrow \leftarrow w_4 \rightarrow \downarrow$$

REG₁ REG₂ $\downarrow v_6$ U6

U4 U5

profiling_penalty(REG₁) =
$$(U1_{Temp} \times w_1) + (U2_{Temp} \times w_2) + (U4_{Temp} \times I_1) + (U5_{Temp} \times w_5)$$

History_penalty

- To represent the thermal relationship within sub-bank register files.
- The CFG (Control Flow Graph) is used to accumulate the access counts of register file.

Basic block α $C(\alpha) = 10$ $\Rightarrow \alpha$ executes 10 cycles $REG_1 = 2$ \Rightarrow access counts of REG_1 $REG_2 = 3$ \Rightarrow access counts of REG_2

History_penalty

 To represent the thermal relationship within sub-bank register files.

Performance Penalty

Bench- mark	Orig.	Binding	Forwarding	Combined
	Cycle count	Pen (%)	Pen (%)	Pen (%)
bilv	376064357	0.0	1.3	0.9
blit	50440416	0.0	1.7	1
crc	5660433	0.0	0.7	0.5
des	41964763	0.0	1.5	8.0
energe	711784	0.0	1.2	1.2
fir	45077873	0.0	1.6	1,1
summin	492696	0.0	8.0	0.8
whet	77202731	0.0	1.5	0.9
average		0.0	1.3	0.9