Novel Task Migration Framework on Configurable Heterogeneous MPSoC Platforms

Hao Shen Frédéric Pétrot*

System Level Synthesis Group, TIMA Laboratory CNRS/Grenoble INP/UJF

43, Avenue Félix Viallet, 38031, Grenoble, France hao.shen@imag.fr frederic.petrot@imag.fr

TIMA Laboratory

Outline

Introduction

Task Migration Definition and Implementation

Task Migration Algorithms

Experimental Results

Outline

Introduction

Task Migration Definition and Implementation

Task Migration Algorithms

Experimental Results

Trends (Power and Cost Constraints for Embedded Systems)

Multiple Processor System-on-Chip (MPSoC)

- Provide high Thread Level Parallelism (TLP)
- Provide high performance
- Power consumption and cost advantages

Configurable processor

- Different extended instruction set for different processors
- Dedicated compiler for each extended instruction set
- Provide high Instruction Level Parallelism (ILP)
- Power consumption and cost advantages

Heterogeneity

- Different configurable processor in a MPSoC for different kinds of applications
- Power consumption and cost advantages

Configurable Processors

Application Specific Instructionset Processors (ASIP)

Configuration for one application or a group of applications

Provide high Instruction Level Parallelism (ILP)

• SIMD instructions, MIMD instructions, specific instructions (such as Multiply-accumulate)

Configurable processors VS. RISC processors

Provide higher performance

Configurable processors VS. ASIC

More flexibility and shorter time-to-market

One Existing Heterogeneous Multiple Configurable SoC Example

General printer solution

6 heterogeneous Xtensa processors

Fixed task mapping

Communication with FIFOs

What is the Problem of Configurable Processors?

Instruction Set

- Core instruction set
- Extended instruction set

Register File

- Core registers
- Extended registers

Processor A 0

Processor A 1

Processor B 0

Processor B 1

Global Communication

Shared Memory

Contribution of This Work

Task migration framework

- Support heterogeneous multiple configurable processor SoC
- Present realization details of this framework
- Add some formal description

Task migration algorithms

- Compare the efficiency of each algorithm
- Compare the migration cost of each algorithm

Outline

Introduction

Task Migration Theory and Implementation

Task Migration Algorithms

Experimental Results

Instruction Set Relationship

$$S = \{S_{core}, S_A, S_B, S_C, S_D\}$$

 $S_{core} \subset S_A$, ..., $S_{core} \subset S_D$, $S_A \subset S_C$, $S_A \subset S_D$, $S_C \subset S_D$, $S_B \subset S_D$

Relationship Between Tasks and Processors

Instruction Set Identification

Assign ID for each CPU type (CPU_ISA_ID)

Indicate the instruction set which it realizes

Assign ID for each task type (TASK_ISA_ID)

Indicate the instruction set which it uses

Use bit operation to accelerate scheduling

- Use one bit to represent a standalone instruction set
- Test compatibility by using bit operations
- Save storage space for the OS realization

Scheduler Realization

Instruction set compatibility

• (CPU_ISA_ID | TASK_ISA_ID) == CPU_ISA_ID

Set	CPU_ISA_ID	Compatible Tasks	TASK_ISA_ID
Core	0x0000	Core	0x0000
A	0x0001	Core and A	0x0000, 0x0001
В	0x0010	Core and B	0x0000, 0x0010
C	0x0101	Core, A and C	0x0000, 0x0001, 0x0101
D	0x1111	Core, A, B, C and D	0x0000, 0x0001, 0x0010, 0x0101, 0x1111

Outline

Introduction

Task Migration Definition and Implementation

Task Migration Algorithms

Experimental Results

First Match First Serve Algorithm

Available Processor (SA)

For j=1 to $|\mathbb{T}_{queue}|$ in the FIFO order

If $c(T_j, P_i) \in \mathbb{C} // T_j$ is compatible with P_i

Choose the task T_j

Most Compatible Algorithm

Available Processor (SD)

Forall $T_j \in \mathbb{T}_{queue}$

If $c(T_j, P_i) \in \mathbb{C} // T_j$ is compatible with P_i

 $\mathbb{T}_{candidate} = \mathbb{T}_{candidate} \cup \mathbb{T}_{j} //Add \mathbb{T}_{j}$ to candidate set

If \mathbb{T} candidate $\neq \emptyset$

choose the task $T = \min(D(T_j \in \mathbb{T}_{candidate}, P_i))$

Outline

Introduction

Task Migration Definition and Implementaton

Task Migration Algorithms

Experimental Results

Motion-JPEG Decoder Example and the Optimization

Heterogeneous MPSoC Architecture

Performance and Cost Advantages

	Fixed Task Assignment	FMFS Algorithm	Most Comp Algorithm	SMP Task Scheduling
Frame/s	1.44	2.88	2.70	2.88
CPUs Gate number	341,773	341,773	341,773	611,295
Perf/Cost	0.50	1.00	0.94	0.56

Heterogeneous architecture VS. homogeneous architecture

- May achieve the same performance
- May need smaller chip size (higher performance/cost ratio)

Task migration VS. fixed task assignment

- Need the same chip size
- Provide higher system performance (shorten the processor waiting time)

Different task migration algorithms have different performance

• FMFS requires less computation resource during migration

Outline

Introduction

Task Migration Definition and Implementation

Task Migration Algorithms

Experimental Results

Conclusion and Future Works

A task migration framework

- Support configurable processors
- Support heterogeneous MPSoC architectures
- Support several migration algorithms

Future works

- Formalization this framework
- More complex case studies (benchmarks)

Questions & Answers

Hao.Shen@imag.fr

Frederic.Petrot@imag.fr

Priority Based Most Compatible Algorithm

Available Processor (SB)

For k = 1 to n // n queues with different priorities

Forall $T_j \in \mathbb{T}_{queue}$

If $c(T_j, P_i) \in \mathbb{C} // T_j$ is compatible with P_i

 \mathbb{T} candidate = \mathbb{T} candidate U Tj

If $\mathbb{T}_{candidate} \neq \emptyset$

choose the task $T = \min(D(T_j \in \mathbb{T}_{candidate, P_i}))$

Time

- 20' presentation
- 5' question