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From Hardware Supply to the Final ApplicationFrom Hardware Supply to the Final Application
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Embedded Software is Becoming More ValuableEmbedded Software Embedded Software isis BecomingBecoming MoreMore ValuableValuable
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Relatives Wachstum: Kfz, Steuergeräte, 
Halbleiter
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The Growing Role of Chip MakersThe Growing Role of Chip Makers

The electronic part of final applications is 
increasingly determined and designed by 
semiconductor chip makers
Customer interface is shifting to the boundary 
between the embedded code in the 
semiconductor device and the application 
software
Building intelligent systems for the future 
requires close collaboration between the 
innovation teams of chip suppliers, chip 
customers

EDA is the bridge between them
Source: Panel Discussion, edaForum07
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Design CostsDesign Costs

Source: ITRS 2008 based on data from Gary Smith
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Bayesian Networks Modelling Automotive 
Software

MotivationMotivation

Today's readmission rate for cars is ~ 70 000 000 cars per 
year

Average of 20 to 70 embedded systems per car

50% development effort spend on software engineering

Every 2nd car recall caused by software problems 

Software quality assessment plays 
an important role in cost 
reduction and customer 
satisfaction

Automotive ElectronicsAutomotive Electronics
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Verification ProblemsVerification Problems

2004
Pontiac recalls the Grand Prix since the software did not understand leap years. 2004 
was a leap year.

2003
A BMW 520 trapped a Thai politician when the computer crashed. The door locks, 
windows, A/C and more were inoperable. Windshield was smashed to get him out. 

2002
BMW recalls the 745i since the fuel pump would shut off if the tank was less than 1/3 
full. Source: http://www.embedded.com/columns/embeddedpulse/179100752?_requestid=42835
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Verification ChallengesVerification Challenges

Challenge: Complexity growth
Example: Diesel systems
2007

Calibration parameters: 16 k
Performance: 300 MIPS
Memory: 4 MByte

Software coding errors

Source: Software Bugs seen from an Industrial Perspective. CAV07 [Kropf07]

Requirements Design Coding Application

Finite-state machines
Timing
Stack/memory overflows
Consistencies

Non-volatile memory 
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Model based design of distributed systems
platform dependent development of the 
application software (UML, Matlab/Simulink, 
C++)
early consideration of the planned target 
platform in the model based system design 
(UML)
mapping of function blocks on architecture 
components
use of virtual prototypes for the abstract
modeling of the target platform

Early analysis of the system integration
early verification based on virtual prototypes
formal and semiformal software verification

Seamless transition to the real prototype
automatic “target code” generation
automatic high level synthesis
co-simulation/emulation
SystemC as intermediate representation

Virtual PrototypeVirtual Prototype

SoftwareSoftware NetworkNetwork HardwareHardware

S Y S T E M CTM

Design Flow of Distributed Embedded SystemsDesign Flow of Distributed Embedded SystemsDesign Flow of Distributed Embedded Systems
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Design and Verification ProcessDesign and Verification Process 13

Requirements Management

Results

Specification

Verification Prozess

Analysis 
(Coverage, Assertions)

ImplementationVerification aims

Challenges
1. Move from document 

centric to model centric 
2. Interfaces between 

requirements, specification, 
verification aims, and 
implementation

3. Tracing of requirements 
and verification aims

4. Automatic generation of 
software, hardware and 
test cases (ATPG)
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Design and Verification Process with UMLDesign and Verification Process with UML 14

Requirements Management

Results

Specification

Verification Prozess

Analysis 
(Coverage, Assertions)

ImplementationVerification aims

• Interfaces between 
specification, verification 
aims, and implementation

• Enable code generation
• Enable test case 

description
• Enable linking and 

tracing of design 
components

• Missing requirements
• Missing support the 

verification process
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UML 2UML 2 15
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System ArchitectureSystem Architecture 16
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Use-Case-
Diagram

System BehaviorSystem Behavior 17
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Scenario / Test caseScenario / Test case 18
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SysMLSysML 19
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Interface to VerificationInterface to Verification 20

Requirements Management

Results

Specification

Verification Prozess

Analysis 
(Coverage, Assertions)

ImplementationVerification aims

Challenge

• System analysis of 
UML/SysML diagrams

• Generating for 
verification aims 
(Assertions)
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System Analysis through Assertions System Analysis through Assertions 22
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Assertion-based VerificationAssertion-based Verification 23

Test pattern indicate test quality
Assertions improve error localization
Assertions for functional und formal verification

Test bench 
(includes test patterns

example

Prozess1
(P1)

Prozess2
(P2)

Prozess3
(P3)

Monitors for Assertions

System-ModelPSL/FLTL 
Property (Assertion)

SystemC-based Temporal Checker

AR

Accept Reject� �

Interfaces for test patterns
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Software ModelingSoftware Modeling

SoftwareSoftware

Semiformal 
Verification

Semiformal 
Verification

Integers, arrays, floating point
Arithmetic operations: +, - , *, /, %
Pointers
Procedures

Formal model
Static and control-flow operations
Model here means a FSM
Boolean variables

Simulation model
Dynamic aspects (e.g., dynamic allocation) 
Data-flow arithmetic operations 
(e.g., multiplication and division)
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Embedded Software Modeling: OverviewEmbedded Software Modeling: Overview
Complex 
C program

CFA Generator1CFA Generator1

Control flow
automata

Formal
model

Simulation
model

Formal verification Simulation

Model GeneratorModel Generator

CIL1CIL1

„Simple“
C program

int p;
int main() {
int i = 0;
while( i != p)
{

i = i + 1;
}

return(0);
}

Block(i=0)

1

0

2

3

Pred (i== p)

Block (i= i + 1)

4
Block (ret=0)

Pred (i != p)

Properties /
Critical states

SymC C/SystemC

1) CIL: http://cil.sourceforge.net

READ F EEE_OK
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module main 
signal s3, s2, s1, i3, i2, i1, ret   : boolean; 
input p2, p1 : boolean;

init
s3 == false; s2 == false; s1 == false;
define 
state0 := (!s3 & !s2 & !s1); state1 := (!s3 & !s2 & s1);
state2 := (!s3 & s2 & !s1);  state3 := (!s3 & s2 & s1);
state4 := (s3 & !s2 & !s1); 
eqCheck := ((p2&i2)|(!p2&!i2))&((p1&i1)|(!p1&!i1));
…
trans
next (s3) == state2; next (s2) == state1;
next (s1) == state0|(state1 & !eqCheck)|state3;
next (i3) == (false & state0) | (m1.c2 & state3)  |

(!(state0 | state3) & i3);
next (i2) == (false & state0) | (m1.s1 & state3) | 

(!(state0 | state3) & i2);
next (i1) == (false & state0) | (m0.s0 & state3) | 

(!(state0 | state3) & i1);
next (ret) == (false & state2) | (!(state2) & ret);
…
invar
add0.a0 == (state3 & i1); add0.b0 == (state3 & true);
add1.a1 == (state3 & i2); add1.b1 == (state3 & false);
…
end

unsigned int p, i, pc;
int main()
{
LL0:

p = random(); 
i  = 0; pc  =  1;

LL1:
if (i!=p)
{

pc = 3;
LL3:

i = i + 1;
pc = 1;
goto LL1;      

}else
{

pc = 2;
LL2:

pc = 4;
goto LL4;

}
LL4:

return(0);
}

Simulation
model

Modeling SemanticsModeling Semantics

Time 
reference

Transition 
state

Block(i=0)

1

0

2

3

Pred (i== p)

Block (i= i + 1)

4
Block (ret=0)

Pred (i != p)

Control flow
automata

Formal
model
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Temporal Checker FrameworkTemporal Checker Framework

Property specification in 
SystemC models

Proposition class

Property synthesis  and 
checking

LTL with Time Bound
F[2] a

Customizable actions in 
special states

SystemC model PSL / FLTL
properties

SystemC kernel &
temporal checker library

Customizable actions:
assertion messages, exceptions

AR

a

!a

a

!a !a

Reject

Accept
a
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Experimental ResultsExperimental Results

EEPROM Emulation Software
Derived 86 Properties from EEELib specification
Performed 93 BLAST-runs (timeout set to 24h)

Total verification time: 532 hours (~22 days) 

Results:
7 trials resulted in BLAST internal error
8 trials did not finish within 24h
78 trials resulted in “the system is safe” message
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Experimental Results IIExperimental Results II

• NVM-Software

< 1min.35.58s4. If a block is a double buffered block, NVM
system should output 1 or 0 to identify the 
valid block.

< 1min.Error2.38sNo 
error

3. A request has only two state: 

"NO_REQUEST" or "WRITE_REQUEST".

34 min.50 min.Internal 
error

< 1min.No 
error

2.34sNo 
error

1. The index of data blocks requested should 
be valid between 0 and the maximal number 
of data blocks or be assigned to FAILED if the 
given block is invalid. 

Verif. 
Time

BLAST

Results
BLAST

Verif. 
Time
CBMC

Results
CBMCProperties

2. A data block is only initalized when the 
address of external buffer is assigned.

Internal 
error

Error No 
error

Experimental ResultsExperimental Results
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First generation of synthesis tools were not accepted…First First generationgeneration of of synthesissynthesis toolstools werewere notnot acceptedaccepted……

One wait statement per loop

for (int i = 0; i<4; i++) {
wait();
e = (a * c * d + i);

}

At least At least oneone waitwait statementstatement betweenbetween twotwo writewrite operationsoperations thethe samesame memorymemory portport

e = (a * c * d);
for (int i = 0; i<4; i++) {

wait();
real_out.write(e + i);
// Error: no wait 
real_out.write(e + i + i);

}
wait();

e = (a * c * d);
for (int i = 0; i<4; i++) {

wait();
real_out.write(e + i);
wait();
real_out.write(e + i + i);

}
wait();
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… first generation of synthesis tools were not accepted……… firstfirst generationgeneration of of synthesissynthesis toolstools werewere notnot acceptedaccepted……

if (a < b) {
e = (a * c * d);
wait();

}
else if (a = b) {
e = (b * c * d);
// Error: no wait

} // Error: ELSE path not 
considered

if (a < b) {
e = (a * c * d);
wait();
wait();

} else if (a = b) {
e = (b * c * d);
wait();

} else {
wait();

}

// Initialisierung
out_valid.write(true);
out1.write(0);
out2.write("11111111");
// Error: no wait 
while (true) {

...//process behavior
}

// Initialisierung
out_valid.write(true);
out1.write(0);
out2.write("11111111");
wait();
while (true) {

...//process behavior
}
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…first generation of synthesis tools were not accepted………firstfirst generationgeneration of of synthesissynthesis toolstools werewere notnot acceptedaccepted……

ie = (a * c * d);
real_out.write(e);
// Error: no wait
for (int i = 0; i<4; i++) {
real_out.write(e + i);
wait();
c = data_in.read();
e = (a * c * d);

}

e = (a * c * d);
real_out.write(e);
wait(); 
for (int i = 0; i<4; i++) {
real_out.write(e + i);
wait();
c = data_in.read();
e = (a * c * d);

}

for (int i = 0; i<4; i++) {
e = (a * c * d + i);
real_out.write(e);
// Error: no wait
if (i == 3) break;
wait();

}

for (int i = 0; i<4; i++) {
e = (a * c * d + i);
real_out.write(e);
wait(); // shift wait in front of 

if
if (i == 3) break;

}

putput nn + 1 + 1 waitswaits afterafter thethe looploop condition and condition and nn + 1 + 1 waitswaits afterafter thethe end of end of thethe
looploop, , ifif n n cyclescycles areare necessarynecessary to to calculatecalculate thethe looploop conditioncondition……

putput nn waitswaits betweenbetween datadata dependentdependent I/O I/O readread and I/O and I/O writeswrites ifif thethe includedincluded
calculationcalculation requiresrequires n n cyclescycles
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„Cycle-Fixed“ guidelines…„„CycleCycle--FixedFixed““ guidelinesguidelines……
e = (a * c * d);
// Error: no wait;
for (int i = 0; i<4; i++) {
e = (a * c * d + i);
wait();

}

e = (a * c * d);
wait();
for (int i = 0; i<4; i++) {
e = (a * c * d + i);
wait();

}

for (int i = 0; i<4; i++) {
wait();
e = (a - 2);
while (i == 0) {

wait();
e = (b - 2);
do {

wait();
e = (b - 2);
if (i == 0) break;

} while (i == 0);
// Error: no wait;

}
// Error: no wait;
real_out.write(e);

}
// Error: no wait;
imaginary_out.write(e);
wait();

for (int i = 0; i<4; i++) {
wait();
e = (a - 2);
while (i == 0) {

wait();
e = (b - 2);
do {

wait();
e = (b - 2);
if (i == 0) break;

} while (i == 0);
wait();

}
wait();
real_out.write(e);

}
wait();
imaginary_out.write(e);
wait();



WILHELMWILHELM--SCHICKARDSCHICKARD--INSTITUTINSTITUT Computer EngineeringComputer Engineering

High Level Synthesis is getting more acceptance
and attention

Known customers: ST, Qualcomm, Alcatel. Fujitsu, 
Panasonic, Toshiba, Thales, Sanyo, Ericsson, Pioneer, 
Motorola, Micronas,  NXP, Broadcom, Sony, Canon
More and more commercial tools: 

Mentor Graphics CatapultC, Forte Design Systems Cynthesizer, 
Cadence C-to-Silicon Compiler, NEC Cyber Workbench, Synfora
PICO, Bluespec BSC, ChipVision PowerOpt, Synplify DSP

More than 50 ASIC Tape-outs reported in 2007, probably
more in 2008

(Older) market analysis
from Gary Smith:

From Verification to  C++/C/SystemC SynthesisFromFrom VerificationVerification to  C++/C/SystemC Synthesisto  C++/C/SystemC Synthesis
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Optimizations
Bus and memory architecture
Datapath micro-architecture
Power-gating
Multiple clock domains
Voltage scaling for dynamic power
Multi-threshold for static power
Clock gating
Pipelining

Verification
Automated generation of SystemC 
transactors
Transactors convert function calls 
to pin-level signal activity

Interface Synthesis

Mentor Graphics – CatapultCMentor Graphics Mentor Graphics –– CatapultCCatapultC
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Mentor Graphics – CatapultC: Technology Incorp.Mentor Graphics Mentor Graphics –– CatapultCCatapultC: Technology : Technology IncorpIncorp..



WILHELMWILHELM--SCHICKARDSCHICKARD--INSTITUTINSTITUT Computer EngineeringComputer Engineering

Mentor Graphics – CatapultCMentor Graphics Mentor Graphics –– CatapultCCatapultC
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Mentor Graphics – CatapultCMentor Graphics Mentor Graphics –– CatapultCCatapultC
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Forte Design Systems – CynthesizerForte Design Systems Forte Design Systems –– CynthesizerCynthesizer
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Forte Design Systems – CynthesizerForte Design Systems Forte Design Systems –– CynthesizerCynthesizer
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Forte Design Systems – CynthesizerForte Design Systems Forte Design Systems –– CynthesizerCynthesizer
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Forte Design Systems – CynthesizerForte Design Systems Forte Design Systems –– CynthesizerCynthesizer
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Cadence – C-to-Silicon CompilerCadenceCadence –– CC--toto--SiliconSilicon CompilerCompiler

Copyright: Cadence Design Systems (www.cadence.com)
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SoC multi modules design (All-in-C)
Input: SystemC, ANSI C (BDL), Legacy RTL
Output: Cycle-accurate model (C++, 
SystemC, SpecC, Verilog), synthesizable RTL 
(VHDL, Verilog)
Stimulus for behavioral simulation can be 
used for cycle or RTL simulation
High controllability by constraint editor
Automatic architecture explorer 

Loop unrolling, pipelining
Cycle accurate simulation with original 
untimed C code
C-RTL equivalence prover (static & dynamic)
Integrated model checking by comparing the 
output sequences gen. by the same stimuli
RTL FloorPlanner

NEC – Cyber WorkbenchNEC NEC –– Cyber WorkbenchCyber Workbench
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NEC – Cyber WorkbenchNEC NEC –– Cyber WorkbenchCyber Workbench
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Verification/
Testbench

Verification/
Testbench

Technology MappingTechnology Mapping

RTL SynthesisRTL Synthesis

High Level SynthesisHigh Level Synthesis

Synthesis FlowSynthesis Flow 49

Catapult
2007b.136

Catapult
2007b.136

Precision
2007a.18

Precision
2007a.18

ISE
10.1
ISE
10.1

ModelSim
SE 6.3f

ModelSim
SE 6.3f

Library BuilderLibrary Builder

Hardware

C++ Specification

VHDL Specification

Untimed C++ vs. 
TLM SystemC

Untimed C++ vs. 
TLM SystemC

Untimed C++ vs. 
Cycle HDL

Untimed C++ vs. 
Cycle HDL

Untimed C++ vs. 
Cycle SystemC

Untimed C++ vs. 
Cycle SystemC
Untimed C++ vs. 

RTL HDL
Untimed C++ vs. 

RTL HDL

Automatic 
Test

Bench
Generation

Untimed C++ vs. 
Mapped HDL

Untimed C++ vs. 
Mapped HDL
Untimed C++ vs. 

Gate HDL
Untimed C++ vs. 

Gate HDL
Untimed C++ vs. 

RTL SystemC
Untimed C++ vs. 
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Algorithm:Algorithm: 50

meanmean

stdstd

normnorm

for/forfor/for

forfor

for/forfor/for

0 – VEC_LENGTH

for/forfor/for

0 – VEC_LENGTH

0 – VEC_LENGTH

0 – N & i – VEC_LENGTH

0 – N

0 – N & 0 – N

0 – N & 0 – VEC_LENGTH

÷

√
÷

Input:
Vector with 256 8 bit
values
Output:
Vector with 256 values
and estimation
coefficients

Input:
Vector with 256 8 bit
values
Output:
Vector with 256 values
and estimation
coefficients
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Synthesis GoalsSynthesis Goals

64 data vectors

Latency: 20 ms

Hardware: Xilinx Virtex FPGA

Clock frequency: 75 MHz

External memory

51
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Manual Float/Fix TransformationManual Float/Fix Transformation

ac_fixed<width, integer, sign, quant, overflow>

ac_int<width, sign>

#include<ac_fixed.h>

Together with native C/C++ data types

Word length optimized by simulation

Simulation speed drops and memory increases

In our example:

float-Version: 1377K

ac_fixed-Version: 19M
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Optimization: 64 vectors in < 20 msOptimization: 64 vectors in < 20 ms 53

allVecsallVecs VecsVecs
2x 32x

256x

256x

256x

256x

256x

256x

256x 256x 64x 

64x 

transA

transB
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Optimization: 64 vectors in < 20 msOptimization: 64 vectors in < 20 ms 54

transA

transB

transB0to50
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Catapult: High Level Synthesis ResultsCatapult: High Level Synthesis Results 55
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Catapult&ModelSim: Very Good Verification IntegrationCatapult&ModelSim: Very Good Verification Integration

SCVerify option

Starts from initial C++ 
specification

Single source for 
simulation and 
synthesis

GCC integrated

56

Verification/
Testbench

Verification/
Testbench

Catapult
2007b.136

Catapult
2007b.136

Precision
2007a.18

Precision
2007a.18

ISE
10.1
ISE
10.1

ModelSim
SE 6.3f

ModelSim
SE 6.3f

Untimed C++ vs. 
TLM SystemC

Untimed C++ vs. 
TLM SystemC

Untimed C++ vs. 
Cycle HDL

Untimed C++ vs. 
Cycle HDL

Untimed C++ vs. 
Cycle SystemC

Untimed C++ vs. 
Cycle SystemC
Untimed C++ vs. 

RTL HDL
Untimed C++ vs. 

RTL HDL
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Test
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Generation

Untimed C++ vs. 
Mapped HDL

Untimed C++ vs. 
Mapped HDL
Untimed C++ vs. 

Gate HDL
Untimed C++ vs. 

Gate HDL
Untimed C++ vs. 

RTL SystemC
Untimed C++ vs. 
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OutlineOutline

EDA Challenges
System Level Design
Verification
Synthesis

HLS Examples
HLS and Dynamic Reconfigurability

Conclusions
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(statically) reconfigurable

execution execution

minutes to days
t

product lifetime
t

execution

prototyping

small volume productions

reconfiguration

From Static to Dynamic ReconfigurabilityFrom Static to Dynamic Reconfigurability
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optimize area and performance
quantify the benefits and costs

(statically) reconfigurable

t

dynamically reconfigurable

multi-context

processor-like reconfigurable
(reconfiguration in each clock cycle)

From Static to Dynamic ReconfigurabilityFrom Static to Dynamic Reconfigurability

Example: NEC STP (DRP)
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Evaluation ApproachEvaluation Approach

performance 
constraint
• initiation interval (II)

application

application mapping

no processor-like
reconfiguration utilize processor-like reconfiguration

mapping techniques for data flow
mapping techniques for control flow

compare required area and delay

statically
reconfigurable

processor-like
reconfigurable
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Techniques for Data FlowTechniques for Data Flow

multi-context pipelining

clock cycle n
state 1

clock cycle n+1
state 2

clock cycle n+2
state 3

II=3
constraint

3
# PEs

3
# contexts

context 1

context 2

context 3
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fast fourier transform (FFT)
(Cooley-Tukey algorithm)

1
# of contexts

II=1
constraint

2

# of 
contexts

II=2
constraint

Optimization of Performance
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fast fourier transform (FFT)
(Cooley-Tukey algorithm)

2

# of 
contexts

II=2
constraint

4

# of 
contexts

II=4
constraint

Optimization of Performance
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fast fourier transform (FFT)
(Cooley-Tukey algorithm)

4

# of 
contexts

II=4
constraint

Optimization of Performance
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Evaluation of Performance using STP (Stream
TransPose from NEC (C-based reconfigurable core)
Evaluation of Performance using STP (Stream
TransPose from NEC (C-based reconfigurable core)

•PE(8bit)x256
•32 context plane
•MULx32
•2port MEMx56
•1port MEMx16

•PE(8bit)x256
•32 context plane
•MULx32
•2port MEMx56
•1port MEMx16

C-based programmability and H/W level performanceC-based programmability and H/W level performance
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Industrial application example of STP Technology 
AV/IT Media Core Processor for Professional Camcoder

STP Engine is embedded as an generic accelerator of the CPU
Implemented functions:

PMW-EX1 Nov. 2007 

STP 
Engine 
embedded 
ASIC

PMW-EX3 July 2008

PMW-EX30 July 2008

Stream Packet Mux/DeMux
Audio Encode
Intelligent DMA
Video Codec, etc

Extended to the enhanced models by updating 
functions running on STP Engine
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NEC – Cyber WorkbenchNEC NEC –– Cyber WorkbenchCyber Workbench
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significant reduction of area
(for our example by up to 63%)

mapping techniques are applicable to a 
wide range of applications

redirecting communication through time 
domain can compensate for the
reconfiguration overhead

Advantages of Dynamically Reconfigurable Processors 
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OutlineOutline

EDA Challenges
System Level Design
Verification
Synthesis
Conclusions
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Automatic Verification and Synthesis has to Become
Reality!

Automatic Verification and Synthesis has to Become
Reality!
Design automation to increase design productivity

Most of design effort is in employee cost (about 80%)
Efforts doubles after two process generations

Include embedded software
Software will get more important 50% is software cost
Future systems: COTS-IP + synthesized hardware and software
to keep flexibility, increase productivity and reduce risks

Closer links with application
Executable specifications
Link requirements with verification
Automatic synthesis and verification for hardware and software

How will fabless/fablite companies differentiate?
Application knowledge
EDA flow and tools


