Automated Synthesis and Verification of
Embedded Systems:

Wishful Thinking or Reality?

Wolfgang Rosenstiel

Computer Engineering
Wilhelm-Schickard-Institute for Informatics
University of Tuebingen
Germany

EBERHARD KARLS
UNIVERSITAT
WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering TUBINGEN



Source: Medea

EBERHARD KARLS
UNIVERSITAT
WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering TUBINGEN



Embedded Software iIs Becoming More Valuable
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Added Value Through New Electronic Functions

Car fabrication cost 11.000
in EUR
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= The electronic part of final applications is
Increasingly determined and designed by
semiconductor chip makers

Customer interface Is shifting to the boundary
between the embedded code in the
semiconductor device and the application
software

Building intelligent systems for the future
requires close collaboration between the
Innovation teams of chip suppliers, chip
customers

- EDA Is the bridge between them

Source: Panel Discussion, edaForumO7
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= System Level Design
= Verification

= Synthesis

s Conclusions
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Today's readmission rate for cars is ~ 70 000 000 cars per
year

Average of 20 to 70 embedded systems per car
50% development effort spend on software engineering
Every 2nd car recall caused by software problems

— Software quality assessment plays _ ? N 7
an important role in cost B N >
reduction and customer
satisfaction
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Verification Problems

o 2004

= Pontiac recalls the Grand Prix since the software did not understand leap years. 2004
was a leap yeatr.

o 2003

= A BMW 520 trapped a Thai politician when the computer crashed. The door locks,
windows, A/C and more were inoperable. Windshield was smashed to get him out.

o 2002
= BMW recalls the 745i since the fuel pump would shut off if the tank was less than 1/3
full. Source: http://www.embedded.com/columns/embeddedpulse/179100752?_ requestid=42835
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2 Challenge: Complexity growth

= Example: Diesel systems
= 2007

+ Calibration parameters: 16 k
+ Performance: 300 MIPS
 Memory: 4 MByte

s Software coding errors
([ © Finite-state machines

.= Consistencies
= Non-volatile memory

A { ° Timing
4
ﬁ = Stack/memory overflows

Source: Software Bugs seen from an Industrial Perspective. CAV07 [Kropf07]

B Requirements B Design B Coding O Application
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= EDA challenges

= Verification
= Synthesis
s Examples and Results
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Design Flow of Distributed Embedded Systems

= Model based design of distributed systems

= platform dependent development of the
appli)cation software (UML, Matlab/Simulink,
C++

= early consideration of the planned target
platform in the model based system design
(UML)

= mapping of function blocks on architecture
components

= use of virtual prototypes for the abstract
modeling of the target platform

= Early analysis of the system integration
= early verification based on virtual prototypes
= formal and semiformal software verification

= Seamless transition to the real prototype
= automatic “target code” generation
= automatic high level synthesis
= co-simulation/emulation
= SystemC as intermediate representation
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Verification Process

Challenges

1. Move from document
v centric to model centric

Specification 2. Interfaces between
; | | requirements, specification,
verification aims, and
Implementation

-~ 3. Tracing of requirements
\‘/ W and verification aims

Requirements Management

Verification aims Implementation

Verification Prozess

; 4. Automatic generation of
Analysis o hard |
- (Coverage, Assertions) Soltware, naraware an
! test cases (ATPG)

Results
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Requirements Management

) )
D UML
a4 \/
Verification Prozess
Analysis
o : (Coverage, Assertions)
Results
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Interfaces between
specification, verification
aims, and implementation

Enable code generation

Enable test case
description

Enable linking and
tracing of design
components

Missing = requirements

Missing - support the
verification process
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UML 2.x
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Architecture
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rio / Test ca
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SysML

i
I

Structure IrRequirements- ' Behavior
Diagram j  Diagram Diagram
T _______ 7y
Block Definition| | |Internal Block Object Activity State Machine| | Use-Case-
Diagram Diagram Diagram Diagram Diagram Diagram
Component Package Deployment I .
Diagram Diagram Diagram ntgractlon
Diagram
" Parametric | | |
I _ icati imi Interaction
Diagram Communication| | Sequence Timing |
o= 1 Diagram Diagram Diagram Overview
— Diagram

o New diagrams in SysML
[ ] 7 Extended/modified diagrams in SysML
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Verificatio

9

Requirements Management Syl;ML
¢ ’ f i I) Challenge
\D System
" Analysis |
e  System analysis of
UML/SysML diagrams
«  Generating for
: Y, verification aims
\_/ I (Coverage, Assertions) (Assertions)
Results
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= EDA challenges
= System Level Design

= Synthesis
o Conclusion
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UML/SysML

(High Level Description)

System Specification (UML/SysML)

Sequence Deployment Structure
Diagram Diagram Diagram
Prozess to

Communication System-Architecture

Module

Abstracte Property

System-

Description
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: Simulation :: Formale Verification |
I 1 I
7 N L ____ N L _____ /
EBERHARD KARLS
WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering TUBINGEN

¢



Test bench
(includes test patterns

example

—» >
L~
| | Prozessl Prozess2 () Prozess3 | | [
(P1) P2) =V (p3)

Monitors for Assertions

Interfaces for test patterns

PSL/FLTL
Property (Assertion)

System-Model

p 1

/

(; ARRY

ystemC-based 'I:emporal Checker

\_

v

Accept

Reject | |

o Test pattern indicate test quality
= Assertions improve error localization
= Assertions for functional und formal verification
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Software Modelin

@ Integers, arrays, floating point

= Arithmetic operations: +, - , *, /, %
Software o Pointers

s Procedures

|
=

= Formal model
= Static and control-flow operations
= Model here means a FSM

\/ = Boolean variables

= Simulation model
Verification = Dynamic aspects (e.g., dynamic allocation)
= Data-flow arithmetic operations

(e.g., multiplication and division)

Semiformal
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EDA challenges
System Level Design

=

Synthesis
Conclusion
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Embedded Software Modeling: Overview

af .
Complex ’ 1) CIL: http://cil.sourceforge.net
- C prograq/ I:> CIL '

int/ > ,Simple® Pred (i== p) Block(i=0)
int main() { C program
|nt_|=(_); Bleck (i=i+ 1)
while( i !=p)
{
i=i+1; B
} CFA Generator?
return(0);
) a -~ =

Control-flow Properties /
utomata Critical states

Formal |:> Simulation
model model
SymC C/SystemC
1N o
Formal verification Simulation
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Modeling Semantics

A

A

signal i3, i2, i1, ret : boolean; Formal

_ingut p2, p1: boolean; _ model

Simulation
model

— - — unsigned int p, i, pc;

init |

1=

s3 == false; s2 == false; s1 == false;

e LLof | P
state0 := (Is3 & !s2 & !s1); state1 := (Is3 & !s2 & s1); p = random(); Control flow
state2 := (1s3 & s2 & ! state3 := (1s3 & s2 & s1); _| automata
state4 :=(s3 & !s2 & @

eqCheck := ((p2&i2)|(!p2&!i2))&((p1&i1)|(!p18&!i1)); Pred (i= Block(i=0)

]

trans

next (s3) = e2; next (s2) == state1;

next (s1) == stateO|(state1 & !eqCheck)|state3;
next (i3) == (false & state0) | .c2 & state3) | Block (ret=0)

s{ate0 | state3) ;

next (i2) ==e & state0) | (m1.s1 & state3) |
(!(state0 | state3) & i2);

next (i1) == (false & state0) | (m0.s0 & state3) |
(!(stateO | state3) & i1);

next (ret) == (false & state2) | (!(state2) & ret);

-—-=--

ack (i= i + 1)

pc =4;

goto LL4; Time
add0.a0 == (state3 & i1); add0.b0 == (state3 & true); LL4: reference
return(0);

add1.a1 == (state3 & i2); add1.b1 == (state3 & false);

end

}

QU R ——
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SystemC model

PSL/FLTL
properties

o

SystemC kernel &
temporal checker library

<

l

Customizable actions:

assertion messages, exceptions

WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering

o

Property specification in
SystemC models
= Proposition class

Property synthesis and
checking

= LTL with Time Bound
F[2] a

Reject

la () la la
@\\&—“Dmcept

Customizable actions in
special states
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s EEPROM Emulation Software

2 Derived 86 Properties from EEELIb specification

a Performed 93 BLAST-runs (timeout set to 24h)
= Total verification time: 532 hours (~22 days)

2 Results:
= 7 trials resulted in BLAST internal error
= 8 trials did not finish within 24h
= 78 trials resulted in “the system is safe” message
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Experimental Results

e NVM-Software

. Results Verif. Results Verif.
Propertles CBMC Time BLAST Time
CBMC BLAST
1. The index of data blocks requested should No 2.34s No < 1min.
be valid between 0 and the maximal number error error
of data blocks or be assigned to FAILED if the
given block is invalid.
2. A data block is only initalized when the Internal | 50 min. Internal 34 min.
address of external buffer is assigned. error error
3. A request has only two state: No 2.38s Error < 1min.
"NO_REQUEST" or "WRITE_REQUEST". error
4. If a block is a double buffered block, NVM 35.58s < 1min.
system should output 1 or O to identify the Error No
valid block. error
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= EDA challenges
= System Level Design
= Verification

= Conclusions
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SIS tools were not accepted.

One wait statement per loop

for (inti=0;i<4; i++) {
wait(); J
e=(@*c*d+i);

}

7

At least one wait statement between two write operations the same memory port

e=(a*c*d); e=(a*c*d);
for (inti=0; i<4; i++) { for (inti=0; i<4; i++) {
walit(); walit();
real_out.write(e + i); real_out.write(e + i);
/[ Error: no wait wait(); J
real_out.write(e + i + i); real_out.write(e + i + i);
} }
walit(); 7 walit(); 7
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neration thesis tools were not accepted

/I Initialisierung /I Initialisierung
out_valid.write(true); out_valid.write(true);
outl.write(0); outl.write(0);
out2.write("11111111"); out2.write("11111111");
/[ Error: no wait wait(); J
while (true) { while (true) {
...[lprocess behavior ...[lprocess behavior
) 7 ) 7
if(a<b){ if (@<b){
e=(a*c*d); e=(a*c*d);
walit(); wait();
} wait();
elseif (a=Db){ }elseif (a=Db){
e=(b*c*d); e=(b*c*d);
// Error: no wait } walit(); J
} // Error: ELSE path not } } else {
considered wait(); J
V } 4
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eneration

for (inti = 0; i<4; i++) {
e=(a*c*d+i)
real_out.write(e);

re not accept

for (inti=0;i<4; i++) {
e=(@*c*d+i);
real_out.write(e);

/[ Error: no wait
if (i == 3) break: ; J
wait(); if (i == 3) break;

} < : <
put n waits between data dependent I/O read and I/O writes if the included
calculation requires n cycles

le=(a*c*d),

real_out.write(e);

/I Error: no wait }
for (inti=0; i<4; i++) { for (inti=0; i<4; i++) {
real_out.write(e + i); real_out.write(e + i);

wait(); walit();
c = data_in.read(); c = data_in.read();
e=(a*c*d); e=(a*c*d);

put n + 1 waits after the loop condition and n + 1 waits after the end of the
loop, if n cycles are necessary to calculate the loop condition...

e=(a*c*d);
real_out.write(e);

EBERHARD KARLS
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,Cycle-Fixed* guidelines

e=(a*c*d);

/I Error: no wait;

for (inti=0;i<4; i++) {
e=(a*c*d+i);

' 4

e=(a*c*d);

v

for (inti=0;i<4; i++) {
e=(a*c*d+i);

WILHELM-SCHICKARD-INSTITUT

wait(); wait();
} }
for (inti=0; i<4; i++) { for (inti=0; i<4; i++) {
wait(); wait();
e=(a-2); e=(a-2);
while (i==0) { while (i==0) {
walit(); wait();
e=(b-2) e=(b-2)
do { do {
wait(); walit();
e=(b-2); e=(b-2);
if (i == 0) break; if (i == 0) break;

} while (i == 0);
/[ Error: no wait; ;

}
/I Error: no wait; ,

real_out.write(e);

}
/I Error: no wait; }

imaginary_out.write(e);
wait();

DO @ @ Computer Engineering

} while (i == 0); J

! v
real_out.write(e);

} v

imaginary_out.write(e); V

wait();
o UNIVERSITAT !
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= High Level Synthesis Is getting more acceptance
and attention
= Known customers: ST, Qualcomm, Alcatel. Fuijitsu,

Panasonic, Toshiba, Thales, Sanyo, Ericsson, Pioneer,
Motorola, Micronas, NXP, Broadcom, Sony, Canon

= More and more commercial tools:

+ Mentor Graphics CatapultC, Forte Design Systems Cynthesizer,
Cadence C-to-Silicon Compiler, NEC Cyber Workbench, Synfora
PICO, Bluespec BSC, ChipVision PowerOpt, Synplify DSP

= More than 50 ASIC Tape-outs reported in 2007, probably

more in 2008 Synplify
= (Older) market analysis B
from Gary Smith: | VD
' Celoxica; e —
T 19.8% Graphics;

44,3%

ForteDS;
26,4%
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a Optimizations

= Bus and memory architecture
= Datapath micro-architecture
= Power-gating

P = Multiple clock domains
Catapuit = Voltage scaling for dynamic power

% > _ E = Multi-threshold for static power
q s = Clock gating
3 ‘,E Micro-architecture g ) T
: w:; - = Pipelining
=[5 optimizearrL o Verification
) " SISIHLNAS JOVHIINI o = Automated generation of SystemC
i transactors
= Transactors convert function calls
to pin-level signal activity
o Interface Synthesis
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Mentor Graphics — CatapultC: Technology Incorp.

m Technology is characterized
for accurate timing and area
— Operating conditions, voltage
thresholds, operator arch,
speed grade, eic

m Hardware is optimized using
these technology libraries
— Like having synthesis timing
guru creating your RTL

m Supports IP, DesignWare,
Custom Interfaces, FPGA
macros

m Enables optimum ASIC and
FPGA synthesis

nior .,

GrOShls DAC. 2008 Mentor Graphics
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== Settings:

» Operating Conditions
* Device Family

« Speed Grade

* Part Number

« Target Frequency

» Multi-Vt
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Mentor Graphics — CatapultC

Automatic Streaming Interfaces

Between Hierarchical Blocks

Symbol Symbol

Encoding Decading =
; Network
Analog / RF Interface

; 5) J
|
 — Interface Synthesis for

. Easy Connection to Bus

Chip-Raté™]
Demodulation
& Despreading

Digital Down Digital Up
Conversion Conversion ||

x —
Digital Filtering @ Pre-Distortion ™=

& Antenna & Digital
Diversity Filtering

Main
Processor
*

Optimized hardware creation using Catapult Synthesis
Starting from High Speed pure ANSI C++ Algorithmic Model

Menior . |
GmShIG DAC, 2008 Mentor Graphics
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Mentor Graphics — CatapultC

Multi-clock Design

m Blocks with lower data rates run with slower clock
— Reduction in switching power
— Reduction in static power by decreasing block area

Technology Constraints Architectural Constraints
(= +2x Irterface Control A Inberfane Comirel
;__. o 0 Forts [2]spacudative Exenition
e 7 Chamsb (s Fam
m ® I | = {8} cascade_prac Parcart sharing Alocanon: (2 0. 000000 4 %
i @ cascade_main MHax Crckes: [ o4
o = re 11,00 500 1000 1600 )
= #9 fir_cascade.c & {S g_::sl_mt Component Grade: [fa=t S
8 woid fir_filterfac_int <18, bro | Frequency 100,00 4 Mee & @ fie_fiter_main Desion Gaal; srea -
{60 voud fir_filtar](ac_int =18, bl | Feriod; 10.000000 | ns @ fe_Fiver_for erprocssco: [BTE -
¢ B void fir_filter2{ac_ink <18, kv Figh Tire: Imﬂ o L fr_filter_for_o
[ woid cawcade{ac_int<18, tru e l— = m fir_hlker2_prac e Lz
‘ﬁ fir_cascadeh TR 0.000000 ﬂ = 'E |; :.rral: . ) |=Lic3
== EEET B - ; @'_r-_!m;::: WO B0 00 10
K Remore Clock Corkrol -8 fie_filter_for_0
Multi Ié clocks Each hierarchical
ple clo Clk1 = 200 MHz Clk2 = 100 MHz CIk3 = 25 MHz block can be assigned
specified with .
- to any clock domain
unique parameters

Decimation Decimation

Decimation
by 2 by 4

by 8

Menlor |
s 14
Gmghls DAC, 2008 Mentor Graphics
winav amos TAT
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Forte Design

What Is Cynthesizer?

- Standards-based ~“ High-level Design
SystemC synthesis Untimed C++ Behavior

— Untimed C++ algorithms
— SystemC hardware constructs

— Algorithm and
control-based designs  asica

- SystemC -
Structure and Interfaces

Scheduling
. o )
« Produces optimized RTL | ‘brares Datapath FSM
— Doesn'’t break your Cynthesizer

EXiStfng RTL SEQn_Oﬁ flow Synthesis ~ Timing Optimization
Directives \

- Easy to deploy

— Integrated process automation

— Verification considered \ EL

throughout the process J RTL

Pawef Area
Copyright 2008 Forte Design Systems o AT !
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Forte Design S

Only SystemC Synthesis
Combines A High Level Of Abstraction
With Required Hardware Constructs

P\ e ANSI Sys_tem

SYSTEMC C Verilog
Object-oriented features for managing complexity Yes Yes No No
Custom interfaces — synthesis and simulation Yes No No Yes
Bit-exact data types Yes No No Yes
Fixed-point data types Yes No No No
Explicit concurrency Yes No No Yes
Synchronous logic and asynchronous logic Yes No No Yes
Structural hierarchy Yes No No Yes
Concurrency and protocol for control designs Yes No No Yes
Compatible with algorithm languages Yes Yes Yes No
Same simulation and synthesis semantics Yes No No Yes
Multiple levels of abstraction Yes No No No

Copyright 2008 Forte Design Systems 3
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Modules & Threads

SC_MODULE

C++ Constructs

C++ Constructs

SC_CTHREAD

Integral C++ data types

SC_METHOD

C++ operators

Ports

SC_in<>

arrays — flattened or
unflattened

SC_out<>

Data Types

bool

sc_int<>

sc_uint<>

sc_bigint<>

control structures

— if/else constructs

— for() and while() loops
— switch() constructs
— references

— statically determinable
pointers

structures
classes
inheritance

operator
overloading

templates
» template classes
- template functions

sc_biguint<>

cynw_fixed<>

Copyright 2008 Forte Design Systems

Compatible with OSCI Synthesis Working Group

draft synthesis subset

WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering
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Forte Design

Production Design Success

Application Domains .

“Forte’s Cynthesizer has
demonstrated its ability to
quickly synthesize high-
quality RTL from complex
algorithms without
sacrificing quality of results.”

Fumiaki Nagao, Sanyo Electric

Copyright 2008 Forte Design Systems

WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering

First tape-out 2003

In broad use on high-volume
production chips

Chips up to 10M gates
— 40% done with Cynthesizer

Datapath designs
— Video, audio, wireless, etc

Control-dominated designs

— Special-purpose processors

— Memory controllers

— /O controllers (eg USB, SATA) !
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Cadence — C-to-Silicon Compiler

System-Level Model
C/C++, SystemC

Scripts
C-to-Silicon Compiler

Embedded Encounter RTL Compiler

CALYPTO
SLEC

Early Software
Development

Incisive Encounter
Verification Digital
Implementation

Copyright: Cadence Design Systems (www.cadence.com)

WNIY ER3LLAL
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NEC — Cyber Workbench

SoC multi modules design (All-in-C) ——
= |nput: SystemC, ANSI C (BDL), Legacy RTL %= _"-’— e

o Qutput: Cycle-accurate model (C++,
SystemC, SpecC, Verilog), synthesizable RTL

=T

(VHDL, Verilog)
= Stimulus for behavioral simulation can be * HES
used for cycle or RTL simulation ~ '|
= High controllability by constraint editor A ”'”-15““ @i @roms o)
= Automatic architecture explorer = Q \
= Loop unrolling, pipelining P
= Cycle accurate simulation with original " ‘ I
untimed C code
o  C-RTL equivalence prover (static & dynamic) f ‘ ; .@]
= |Integrated model checking by comparing the ¥} ,5 g
output sequences gen. by the same stimuli - N
@ RTL FloorPlanner "‘

Cell Basad IC Structure o ASIC  FPGA

WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering TUBINGEN &



NEC — Cyber Workbench

Behavioral CPU Bus I/F generator | f ‘:
Plibrary | _ .. — comen N o 5
"1 Behavioral description . | RTLIP .

{SystemeSpecc] [ ANSI-C (BDL) - IL[ Veirlog/VHDL ]: '[ SystemC

________________________ . — . — =i e e e e
/Formal Verifier\ » /lgh-speed simulator \

| C-RTL Equivalence - L Bit-accurate
Prover Behawo_ral . Cycle Behaworal Slmulator
Synthemzer Accurate | T

Cycle-accurate HW/SW

Property ¥ : oy
Checker Control-intensive - Co-mmulator

FPGA Accelerator

SystemC I

SystemC simulator

Library
Characterizer | QoR
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE;; Analyzer

RT Power
Estimator

Testbench
Generator

Logic synthesﬂs
& Back-end implementation |

_________________________________________

T NIV ERSITAT !
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= EDA Challenges

= System Level Design
= Verification

= Synthesis

=

= HLS and Dynamic Reconfigurability
o Conclusions

EBERHARD KARLS
UNIVERSITAT
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Synthesis Flow

C++ Specification

VHDL Specification Library Builder

Untimed C++ vs. Automatic

: : Catapult | || TLM SystemC
High Level Synthesis o 136 ST T

Cycle HDL Bench

Untimed C++ vs. Generation
Cycle SystemC

- Precision L Untimed C++ vs.
RTL SyntheS|s 2007a.18 RTL HDL

| Untimed C++ vs.
Mapped HDL
Untimed C++ vs.
Gate HDL
Untimed C++ vs.
RTL SystemC

Technology Mapping

ModelSim Verification/

Testbench

Hardware

EBERHARD KARLS
UNIVERSITAT
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Algorithm:

h VEC LENGTH Input:

Vector with 256 8 bit
> 4 values
“ VEC LENGTH Output:

Vector with 256 values
and estimation
VEC_LENGTH coefficients

EBERHARD KARLS
UNIVERSITAT
DO @ @ Computer Engineering TUBINGEN
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hesis Goals

o 64 data vectors
2 Latency: 20 ms

= Hardware: Xilinx Virtex FPGA

= Clock frequency: 75 MHz

= External memory

EBERHARD KARLS
UNIVERSITAT
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ac_fixed<width, integer, sign, quant,

ac_int<width, sign>
#include<ac fixed.h>
Together with native C/C++ data types
Word length optimized by simulation
Simulation speed drops and memory increases
In our example:

= float-Version: 1377K

= ac_fixed-Version: 19M

WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering
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Optimization: 64 vectors in < 20

allvVecs

2X 256X

256X
256X
N ¢ N 256X
256X
256X

biﬁﬁﬂ)(/ECS@

EBERHARD KARLS
UNIVERSITAT
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Optimization: 64 vectors in < 20 ms

= i} dut
+>{E Interface Contral —‘_J Ports

® Ports €
i 5.-'.-;- f featureVec a rsc (15936x3)

+>,__j Constant .l!'.rren,-I o
— =-{%} dut_proc
=-{&} dut_proc ’ ﬁ} P

:r,__j Arrays = rteration Count: | —
=@ dut_main -|'-_
=@ allVecs * + Iteration Count: | 249 4

~{& mean (I1=1) €~ Iteration Count: | 250 B
- std (1I=1) '

—Lsliouall

(@ sgrt_for (II=1)
Iteration Count: | 1326 4
>@ norm (II=1)
=@ transfS0 (I1=1) [Juaroll
i T Tin
45 transf_i24 " piartial | o @
(@ transA (II=1) -
—@ transB (II=1)
or [+] Pipeline
: %“% transBOto50 (II
& i Initiation Interval: 1
=-{8) big256
=@ big_i1326 (I1=1)€
 L.m big_il326_iParVecs [¥]Loop Can Be Merged
{8} parVecsB
EBERHARD KARLS
UNIVERSITAT
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atapult: High

350000

300000 -

250000

200000

150000

100000 -

50000 -




Catapult&ModelSim: Very Good Verification Integration

SCVerify option

Starts from initial C++

specification

Single source for
simulation and
synthesis

GCC integrated

WILHELM-SCHICKARD-INSTITUT

Oooo

@ Flow Package Properties x|

Flow Package: |5C'I.|'Efiﬁ-' |
Version: [2007a.2 |
|

Description: |51_.rsteml: Verification
Catapu |t Script: ..._HOME fpkas/sifjuserware /En_na/flows/app_scaen. fio |
2007b.136 Options

Reset Duration (cydes): | 2.0
Sym:hrunize All Resets
PreCiSion Default Stack Size: |54|j|j|jg|jg

2007a.18 Testhench Invocation Args: |
[ |Enable C Debug Environment In Modelsim
k [ Jowverride Cpppath In Modelsim With Catapult Compiler {unix Only)
Abort Simulation When Error Count F'.eaches:| 0

[+]Enable Automatic Deadlodk Detection
Additional Indude Directory Paths: |

Additional Link Library Paths: |

Additional Link Libraries: |
[+]uze Modelsim [ Questasim For Simulation
[*]use Osci For Simulation

[ Juse Mcsim For Simulation

[ Juse vista For Simulation

@ Computer Engineering TUBINGEN I
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EDA Challe
System Level Design
Verification

Synthesis
= HLS Exam

=

Conclusion

WILHELM-SCHICKARD-INSTITUT
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tatic to Dynamic Reconfigurabilit

(statically) reconfigurable

prototyping

minutes to days

small volume productions

product lifetime

EBERHARD KARLS
UNIVERSITAT
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(statically) reconfigurable

dynamically reconfigurable

processor-like reconfigurable
(reconfiguration in each clock cycle)

o optimize area and performance

- Example: NEC STP (DRP)
o quantify the benefits and costs

EBERHARD KARLS
UNIVERSITAT
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Evaluation Approach

performance
constraint

v v . initiation interval (Il

application mapping

application

no processor-like

: . utilize processor-like reconfiguration
reconfiguration

mapping techniques for data flow
mapping techniques for control flow

/) ey LEE RRE Pt | WEEPT WRT ERT
statically V processor-like
reconfigurable reconfigurable

EBERHARD KARLS
UNIVERSITAT
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Technigues

multi-context pipelining

constraint | # contexts | # PEs.
I1=3 3 3

clock cycle n
stapX I[
ontext 1

C
clock cycle n+1
e
context 2

clock cycle n+2
state 3
context 3

xb

c3
C'Ste p 3 4 e Kﬁ;‘w@zslﬂr !
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Optimization of Performance

fast fourier transform (FFT)
(Cooley-Tukey algorithm)

R Sl
AN Q vi. 11=2
Co ks IEEN
LAWY
O—0—0 . ?070v6“ 2
N AA“

) (%)
OY®

S
=

C

O O

C
@
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Optimization of Performance

fast fourier transform (FFT)
(Cooley-Tukey algorithm)

contexts
4

B 19

H B 5 24
% P . 229

Umvnnslﬂr
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Optimization of Performance

fast fourier transform (FFT)
(Cooley-Tukey algorithm)

l1=4

# of
contexts

N
A

]

P

YYYY

C
C

;%%E
Q) Q)

£
i

1

2
b B
EBKRHARD Kﬁ;‘wnnslﬂr !
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Evaluation of Performance using STP (Stream
m NEC (C-based reconfigurable cor

= TR |Hmu||Hmu| |Hmu||Hmu| |Hmu||l'hlu| |Hmu||l'hlu|
o D LD ey 0RO 60 00 W) |00 O (W) (W)
' | 266 MHz B
; T
: SpEpEneined | Topas
1
1 i
]
e ] STC [E& FOFG STC [E&
por | (107100 NOR -
Eth PCI Flash
Express| | AEr I?Ii 1/0
(o] o, "
8 @€ 8 g 183 = P (i PO
1-lane Ml 32b 16b 8b 4ch
2ch 33 MHz 50MHz
*PE(8bit)x256
T T T =fi
32 context plane STC - STC
Tul
*MULX32
«2port MEMx56
*1port MEMx16 O W] O M| | O (W (W
|Hmu||Hrrl.|| |Hmu||Hrrl.|| |Hmu|||'hl.|| |Hmu|||'hl.||

EBERHARD KARLS
UNIVERSITAT
WILHELM-SCHICKARD-INSTITUT @@ @ @ Computer Engineering TUBINGEN



Industrial application example of STP Technology

= AV/IT Media Core Processor for Professional Camcoder
= STP Engine is embedded as an generic accelerator of the CPU

= Implemented functions: Extended to the enhanced models by updating

functions running on STP Engine

B Stream Packet Mux/DeMux
®Audio Encode

Eintelligent DMA

®Video Codec, etc

STP
Engine

embedded
ASIC

PMW-EX30 July 2008
PMW'EX1 NOV. 2007 EBgRHARD KARLS !
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NEC — Cyber Workbench

Behavioral CPU Bus I/F generator | f ‘:
Plibrary | _ .. — comen N o 5
"1 Behavioral description . | RTLIP .

{SystemeSpecc] [ ANSI-C (BDL) - IL[ Veirlog/VHDL ]: '[ SystemC

________________________ . — . — =i e e e e
/Formal Verifier\ » /lgh-speed simulator \

| C-RTL Equivalence - L Bit-accurate
Prover Behawo_ral . Cycle Behaworal Slmulator
Synthemzer Accurate | T

Cycle-accurate HW/SW

Property ¥ : oy
Checker Control-intensive - Co-mmulator

FPGA Accelerator

SystemC I

SystemC simulator

Library
Characterizer | QoR
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE;; Analyzer

RT Power
Estimator

Testbench
Generator

Logic synthesﬂs
& Back-end implementation |

_________________________________________
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Advantages of Dynamically Reconfigurable Processors

= significant reduction of area
(for our example by up to 63%)

= mapping techniques are applicable to a
wide range of applications

= redirecting communication through time
domain can compensate for the
reconfiguration overhead

E K
UNIVERSITAT
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= EDA Challenges

= System Level Design
= Verification

= Synthesis

EBERHARD KARLS
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Automatic Verification and Synthesis has to Become

- Reality

o Design automation to increase design productivity
= Most of design effort is in employee cost (about 80%)
= Efforts doubles after two process generations

o |nclude embedded software

= Software will get more important - 50% is software cost

= Future systems: COTS-IP + synthesized hardware and software
to keep flexibility, increase productivity and reduce risks

o Closer links with application
= Executable specifications
= Link requirements with verification
= Automatic synthesis and verification for hardware and software

o How will fabless/fablite companies differentiate?
= Application knowledge
= EDA flow and tools

EBERHARD KARLS
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