Automated Synthesis and Verification of Embedded Systems: Wishful Thinking or Reality?

Wolfgang Rosenstiel

Computer Engineering Wilhelm-Schickard-Institute for Informatics University of Tuebingen Germany

From Hardware Supply to the Final Application

Embedded Software is Becoming More Valuable

Innovation by Source, %

Source: 2003 McKinsey-PTW HAWK survey (Institute for Production Management at the Technical University at Darmstadt, McKinsey analysis) EBERHARD KARLS

> Universität Tübingen

The Automotive Silicon Drive

WILHELM-SCHICKARD-INSTITUT

Computer Engineering

Source: Bosch

Added Value Through New Electronic Functions

The Growing Role of Chip Makers

- The electronic part of final applications is increasingly determined and designed by semiconductor chip makers
- Customer interface is shifting to the boundary between the embedded code in the semiconductor device and the application software
- Building intelligent systems for the future requires close collaboration between the innovation teams of chip suppliers, chip customers

\rightarrow EDA is the bridge between them

Source: Panel Discussion, edaForum07

Outline

EDA challenges

- System Level Design
- Verification
- Synthesis
- Conclusions

Design Costs

Automotive Electronics

- Today's readmission rate for cars is ~ 70 000 000 cars per year
- Average of 20 to 70 embedded systems per car
- 50% development effort spend on software engineering

EBERHARD KARLS

- Every 2nd car recall caused by software problems
 - → Software quality assessment plays an important role in cost reduction and customer satisfaction

Verification Problems

- **2004**
 - Pontiac recalls the Grand Prix since the software did not understand leap years. 2004 was a leap year.
- **2003**
 - A BMW 520 trapped a Thai politician when the computer crashed. The door locks, windows, A/C and more were inoperable. Windshield was smashed to get him out.
- **2002**
 - BMW recalls the 745i since the fuel pump would shut off if the tank was less than 1/3 full.
 Source: http://www.embedded.com/columns/embeddedpulse/179100752?_requestid=42835

Verification Challenges

- Challenge: Complexity growth
 - Example: Diesel systems
 - 2007
 - Calibration parameters: 16 k
 - Performance: 300 MIPS
 - Memory: 4 MByte

Software coding errors

- Finite-state machines
- Timing
- Stack/memory overflows
- Consistencies
 - Non-volatile memory

Source: Software Bugs seen from an Industrial Perspective. CAV07 [Kropf07]

■ Requirements ■ Design ■ Coding □ Application

Outline

EDA challenges

- System Level Design
- Verification
- Synthesis
- Examples and Results

Design Flow of Distributed Embedded Systems

Model based design of distributed systems

- platform dependent development of the application software (UML, Matlab/Simulink, C++)
- early consideration of the planned target platform in the model based system design (UML)
- mapping of function blocks on architecture components
- use of virtual prototypes for the abstract modeling of the target platform

Early analysis of the system integration

- early verification based on virtual prototypes
- formal and semiformal software verification

Seamless transition to the real prototype

- automatic "target code" generation
- automatic high level synthesis
- co-simulation/emulation

Computer Engineering

- SystemC as intermediate representation

Design and Verification Process

Challenges

- 1. Move from document centric to model centric
- 2. Interfaces between requirements, specification, verification aims, and implementation
- 3. Tracing of requirements and verification aims
- 4. Automatic generation of software, hardware and test cases (ATPG)

Design and Verification Process with UML

- Interfaces between specification, verification aims, and implementation
- Enable code generation
- Enable test case description
- Enable linking and tracing of design components
- Missing \rightarrow requirements
- Missing \rightarrow support the verification process

UML 2

System Architecture

System Behavior

Scenario / Test case

SysML

19

Interface to Verification

Outline

- EDA challenges
- System Level Design
- Verification
- Synthesis
- Conclusion

System Analysis through Assertions

22

Assertion-based Verification

- Test pattern indicate test quality
- Assertions improve error localization
- Assertions for functional und formal verification

Software Modeling

Integers, arrays, floating point

- Arithmetic operations: +, -, *, /, %
- Pointers
- Procedures
- Formal model
 - Static and control-flow operations
 - Model here means a FSM
 - Boolean variables

Semiformal Verification

- Simulation model
 - Dynamic aspects (e.g., dynamic allocation)
 - Data-flow arithmetic operations
 (e.g., multiplication and division)

Outline

- EDA challenges
- System Level Design
- Verification
 - Semi-Formal Verification Flow and Results
- Synthesis
- Conclusion

Embedded Software Modeling: Overview

Modeling Semantics

Temporal Checker Framework

- Property specification in SystemC models
 - Proposition class
 - Property synthesis and checking

 Customizable actions in special states

Experimental Results

- EEPROM Emulation Software
- Derived 86 Properties from EEELib specification
- Performed 93 BLAST-runs (timeout set to 24h)
 - Total verification time: 532 hours (~22 days)
- Results:
 - 7 trials resulted in BLAST internal error
 - 8 trials did not finish within 24h
 - 78 trials resulted in "the system is safe" message

Experimental Results

• NVM-Software

Properties	Results CBMC	Verif. Time CBMC	Results BLAST	Verif. Time BLAST	
1. The index of data blocks requested should be valid between 0 and the maximal number of data blocks or be assigned to FAILED if the given block is invalid.	No error	2.34s	No error	< 1min.	
2. A data block is only initalized when the address of external buffer is assigned.	Internal error	50 min.	Internal error	34 min.	
3. A request has only two state: "NO_REQUEST" or "WRITE_REQUEST".	No error	2.38s	Error	< 1min.	
4. If a block is a double buffered block, NVM system should output 1 or 0 to identify the valid block.	Error	35.58s	No error	< 1min.	
Eberhard Karls Universität Tübingen					

Outline

- EDA challenges
- System Level Design
- Verification
- Synthesis
- Conclusions

First generation of synthesis tools were not accepted...

One wait statement per loop

At least one wait statement between two write operations the same memory port

... first generation of synthesis tools were not accepted...

... first generation of synthesis tools were not accepted...

put *n* waits between data dependent I/O read and I/O writes if the included calculation requires n cycles

put n + 1 waits after the loop condition and n + 1 waits after the end of the loop, if n cycles are necessary to calculate the loop condition...

EBERHARD KARLS

UNIVERSITÄ

Tübingen

From Verification to C++/C/SystemC Synthesis

- High Level Synthesis is getting more acceptance and attention
 - Known customers: ST, Qualcomm, Alcatel. Fujitsu, Panasonic, Toshiba, Thales, Sanyo, Ericsson, Pioneer, Motorola, Micronas, NXP, Broadcom, Sony, Canon
 - More and more commercial tools:

- Mentor Graphics CatapultC, Forte Design Systems Cynthesizer, Cadence C-to-Silicon Compiler, NEC Cyber Workbench, Synfora PICO, Bluespec BSC, ChipVision PowerOpt, Synplify DSP
- More than 50 ASIC Tape-outs reported in 2007, probably more in 2008
 Symplify
- (Older) market analysis from Gary Smith:

WILHELM-SCHICKARD-INSTITUT

Mentor Graphics – CatapultC

- Optimizations
 - Bus and memory architecture
 - Datapath micro-architecture
 - Power-gating
 - Multiple clock domains
 - Voltage scaling for dynamic power
 - Multi-threshold for static power
 - Clock gating
 - Pipelining
- Verification

Computer Engineering

- Automated generation of SystemC transactors
- Transactors convert function calls to pin-level signal activity
- Interface Synthesis

Mentor Graphics – CatapultC: Technology Incorp.

- Technology is characterized for accurate timing and area
 - Operating conditions, voltage thresholds, operator arch, speed grade, etc
- Hardware is optimized using these technology libraries
 - Like having synthesis timing guru creating your RTL
- Supports IP , DesignWare, Custom Interfaces, FPGA macros
- Enables optimum ASIC and FPGA synthesis

Universität

TÜBINGEN

WILHELM-SCHICKARD-INSTITUT

DAC, 2008 Mentor Graphics

Mentor Graphics – CatapultC

Mentor Graphics – CatapultC

Multi-clock Design

- Blocks with lower data rates run with slower clock
 - Reduction in switching power
 - Reduction in static power by decreasing block area

What Is Cynthesizer?

- Standards-based SystemC synthesis
 - Untimed C++ algorithms
 - SystemC hardware constructs
 - Algorithm and control-based designs
- Produces optimized RTL
 - Doesn't break your existing RTL sign-off flow
- Easy to deploy
 - Integrated process automation
 - Verification considered throughout the process

Copyright 2008 Forte Design Systems

Only SystemC Synthesis Combines A High Level Of Abstraction With Required Hardware Constructs

	SYSTEMC"	C++	ANSI C	System Verilog
Object-oriented features for managing complexity	Yes	Yes	No	No
Custom interfaces – synthesis and simulation	Yes	No	No	Yes
Bit-exact data types	Yes	No	No	Yes
Fixed-point data types	Yes	No	No	No
Explicit concurrency	Yes	No	No	Yes
Synchronous logic and asynchronous logic	Yes	No	No	Yes
Structural hierarchy	Yes	No	No	Yes
Concurrency and protocol for control designs	Yes	No	No	Yes
Compatible with algorithm languages	Yes	Yes	Yes	No
Same simulation and synthesis semantics	Yes	No	No	Yes
Multiple levels of abstraction	Yes	No	No	No

Copyright 2008 Forte Design Systems

Modules & Threads
SC_MODULE
SC_CTHREAD
SC_METHOD
Ports
sc_in<>
sc_out<>
Data Types
bool
sc_int<>
sc_uint<>
sc_bigint<>
sc_biguint<>
cynw_fixed<>

C++ Constructs

Integral C++ data types

C++ operators

arrays – flattened or unflattened

control structures

- if/else constructs
- for() and while() loops
- switch() constructs
- references
- statically determinable pointers

C++ Constructs

- structures
- classes
- inheritance
- operator overloading
- templates
 - template classes
 - template functions

Compatible with OSCI Synthesis Working Group draft synthesis subset

Copyright 2008 Forte Design Systems

Production Design Success

"Forte's Cynthesizer has demonstrated its ability to quickly synthesize highquality RTL from complex algorithms without sacrificing quality of results."

Fumiaki Nagao, Sanyo Electric

Copyright 2008 Forte Design Systems

WILHELM-SCHICKARD-INSTITUT

- First tape-out 2003
- In broad use on high-volume production chips
- Chips up to 10M gates
 - 40% done with Cynthesizer
- Datapath designs
 - Video, audio, wireless, etc
- Control-dominated designs
 - Special-purpose processors
 - Memory controllers

Computer Engineering

- I/O controllers (eg USB, SATA)

TÜBINGEN

Cadence – C-to-Silicon Compiler

NEC – Cyber Workbench

- SoC multi modules design (All-in-C)
- Input: SystemC, ANSI C (BDL), Legacy RTL
- Output: Cycle-accurate model (C++, SystemC, SpecC, Verilog), synthesizable RTL (VHDL, Verilog)
- Stimulus for behavioral simulation can be used for cycle or RTL simulation
- High controllability by constraint editor
- Automatic architecture explorer
 - Loop unrolling, pipelining
- Cycle accurate simulation with original untimed C code
- C-RTL equivalence prover (static & dynamic)
- Integrated model checking by comparing the output sequences gen. by the same stimuli

Computer Engineering

RTL FloorPlanner

NEC – Cyber Workbench

Outline

EDA Challenges

- System Level Design
- Verification
- Synthesis
 - HLS Examples
 - HLS and Dynamic Reconfigurability
- Conclusions

Synthesis Flow

Algorithm:

Input:

Vector with 256 8 bit values

Output:

Vector with 256 values and estimation coefficients

Synthesis Goals

- 64 data vectors
- Latency: 20 ms
- Hardware: Xilinx Virtex FPGA
- Clock frequency: 75 MHz
- External memory

Manual Float/Fix Transformation

- ac_fixed<width, integer, sign, quant, overflow>
- ac_int<width, sign>
- #include<ac_fixed.h>
- Together with native C/C++ data types
- Word length optimized by simulation
- Simulation speed drops and memory increases
- In our example:
 - float-Version: 1377K
 - ac_fixed-Version: 19M

Optimization: 64 vectors in < 20 ms

Optimization: 64 vectors in < 20 ms

Catapult: High Level Synthesis Results

Catapult&ModelSim: Very Good Verification Integration

- SCVerify option
- Starts from initial C++ specification
- Single source for simulation and synthesis
- GCC integrated

		Ø rl		
CVerify option		Flow Package: SCVerify		
arts from initial C++	Catapult	Version: 2007a.2 Description: SystemC Verification	erware/Ep. pa/flows/app. scoop flo	
ngle source for	2007b.136	Options		
mulation and		Reset Duration (cycles):	2.0	
ntnesis	2007a.18	Default Stack Size: Testbench Invocation Args:	6400000	
CC integrated	¥	Enable C Debug Environment In Override Cpppath In Modelsim V	ronment In Modelsim Modelsim With Catapult Compiler (unix Only)	
	ISE 10.1	Abort Simulation When Error Count	Reaches: 0 🗲	
	Ý	Additional Link Library Paths: Additional Link Libraries:		
		Use Modelsim / Questasim For Si	imulation	
		Use Ncsim For Simulation		
			<u>QK</u> <u>C</u> ancel	
WILHELM-SCHICKARD-INSTITUT	Computer Engineer	ing	TÜBINGEN	

56

Outline

EDA Challenges

- System Level Design
- Verification
- Synthesis
 - HLS Examples
 - HLS and Dynamic Reconfigurability
- Conclusions

From Static to Dynamic Reconfigurability

From Static to Dynamic Reconfigurability

- optimize area and performance
- quantify the benefits and costs

 \rightarrow Example: NEC STP (DRP)

WILHELM-SCHICKARD-INSTITUT

Evaluation Approach

Techniques for Data Flow

multi-context pipelining

Optimization of Performance

WILHELM-SCHICKARD-INSTITUT

fast fourier transform (FFT) (Cooley-Tukey algorithm)

8

Computer Engineering

9

2

6

Optimization of Performance

fast fourier transform (FFT) (Cooley-Tukey algorithm)

Optimization of Performance

fast fourier transform (FFT) (Cooley-Tukey algorithm)

Evaluation of Performance using STP (Stream TransPose from NEC (C-based reconfigurable core)

C-based programmability and H/W level performance

PE(8bit)x256
32 context plane
MULx32
2port MEMx56
1port MEMx16

Eberhard Karls Universität Tübingen

Industrial application example of STP Technology

- AV/IT Media Core Processor for Professional Camcoder
 - STP Engine is embedded as an generic accelerator of the CPU
 - Implemented functions:

Extended to the enhanced models by updating functions running on STP Engine

NEC – Cyber Workbench

Advantages of Dynamically Reconfigurable Processors

- significant reduction of area (for our example by up to 63%)
- mapping techniques are applicable to a wide range of applications
- redirecting communication through time domain can compensate for the reconfiguration overhead

Outline

EDA Challenges

- System Level Design
- Verification
- Synthesis
- Conclusions

Automatic Verification and Synthesis has to Become \rightarrow Reality!

- Design automation to increase design productivity
 - Most of design effort is in employee cost (about 80%)
 - Efforts doubles after two process generations
- Include embedded software
 - Software will get more important \rightarrow 50% is software cost
 - Future systems: COTS-IP + synthesized hardware and software to keep flexibility, increase productivity and reduce risks
- Closer links with application
 - Executable specifications
 - Link requirements with verification
 - Automatic synthesis and verification for hardware and software
- How will fabless/fablite companies differentiate?
 - Application knowledge
 - EDA flow and tools

