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NDRs in MOBILE Logic Circuits
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NDRs in MOBILE Logic Circuits

@) 1 Vislt) © 1
|
L

Vbias

The simplest function - an inverter
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NDRs in MOBILE Logic Circuits

Circuit Structures
e linearly separable Boolean functions
threshold gate (TG)

e any arbitrary Boolean function

o multi-threshold threshold gate (MTTG)
o generalized threshold gate (GTG)

Synthesis Algorithms
¢ no synthesis algorithm for MTTG

e synthesis algorithm for GTG, but:

o input function in Reed-Muller form
o lower number of branches possible
o lower number of switching elements possible
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Challenge

New Synthesis Algorithm

 input in SOP form
« improvement of circuit structure
o simpler functions

o lower number of branches

- algorithm efficiency
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MTTG vs. GTG
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® each branch - one NDR with
one transistor

® needs different NDRs (weights)

® implements multi-threshold
threshold function directly

number of NDRs increases
quadratically with number of
inputs
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each branch - one NDR and serial-parallel
transistors network

uniform NDRs elements but one

implements any n-variable Boolean function

® number of NDRs increases proportionally with

number of inputs
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GTG - Formal Model

Vmasi

IF: 2.0 2.0 2.0 1.0 }%
* N;j(X)-unate function
e “upper” functions: N;(X) N“‘(X‘) Ns"ﬁ) N‘(Xf Y)

whereimod 2 =1 2.0 2.0 2_0X

“lower” functions: N;(X)
Where I mod 2 - 0 Na(X) NZ(Xf
|
THEN:
0 =0
V(X) = Yioi(X) +N(X) [=2k-1

Y1 (X)N)(X) I =2k
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GTG - Formal Model

Vmasi
IF: 2.0 1.0}%
* N;j(X)-unate function
e “upper” functions: N;(X) ~"® — - veo
whereimod 2 =1 20y [EENE
“lower” functions: N;(X)

where imod 2 =0
o N,'(X)N,’_H'(X) = N,‘_H‘(X)

Nz(Xj

THEN: K
Y(X) = @ N;(X)
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The Smallest Unate Function

When Y;_1(X) is represented as sum of minterms:
Yii1(X) = UM, (X)),
then

UM X)+U¢:U>1 (X),

where (CU 1(X) is a cofactor of M, 1(X)
When simplified to SOP form, we get N;(X) = UI( )1 where I,( )1 are
K

positive unate function, therefore N;(X) is also a positive unate
function.

Corollary To obtain N;(X) implied by Y(;_1)(X) it is enough to

remove complemented variables from Y(;_1)(X)
represented in SOP form.
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Key Observation

Yo(X) in sum of products (SOP) form

4

repeat until Y;(X) =0

- obtain smallest unate N;(X)
implied by Y;_1(X)

- Yi(X) = Yi_1(X) @ Ni(X)

4

Yo(X) =N1(X) @ N2(X) @ ... © Np(X)

where: N,'(X)N,‘_H(X) = N,'_H'(X)
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Proposed Synthesis Algorithm

Require: n-variable Boolean function Y(X)
Ensure: NDR, vs. NDRy, relation, and N;(X) functions

1: if Y(0") = 0 then
2:  NDR; > NDRy,
3: else
4: NDR, < NDRy,
5. Y(X)=1&Y(X),
6: end if

7: seti=1,

8: find the smallest unate function N;(X) implied by Y(X),
9: if Y(X) = N;(X) then exit algorithm
10: calculate Y;(X) such that Y(X) = N;(X) ¢ Y;(X),
11: while Y;(X) # 0 do
12:  find the smallest unate function Ni;1(X) implied by Y;(X),
13:  calculate Y;;1(X) such that Y;(X) = N1 (X) @ Yi11(X),
14: seti=i+1,
15: end while
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Proposed Synthesis Algorithm

Require: n-variable Boolean function Y(X)
Ensure: NDR, vs. NDRy, relation, and N;(X) functions

1: if Y(0") = 0 then

2: NDR, > NDRy,

3: else

4: NDR, < NDRy,

5. Y(X) =1 Y(X),

6: end if

7: seti=1,

8: find the smallest unate function N;(X) implied by Y(X),
9: if Y(X) = N;(X) then exit algorithm

10: calculate Y;(X) such that Y(X) = N;(X) ¢ Y;(X),
11: while Y;(X) # 0 do
12:  find the smallest unate function N;1(X) implied by Y;(X),
13: calculate Yi;1(X) such that Y;(X) = N1 (X) @ Yip1(X),
14: seti=i+1,
15: end while
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How It Works for: Y(X3) = x1X3 + x2x3

step 1: for Y(0?) setup NDRq and NDR; relation

Vbias
* Y(03) =0 = NDRy > NDR,
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How It Works for: Y(X3) = x1X3 + x2x3

step 2: calculate smallest unate function N1 (X3?) implied by Y(X3)

2.0 1.0

Y(03) = 0 = NDRy > NDR,
Nl(XB) = X1 + X2X3

Y1(X3) = N1 (X3) @ Y(X3) = x1x0X3 Ny (XL< Voo
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How It Works for: Y(X3) = x1X3 + x2x3

repeat step 2: calculate smallest unate function N>(X?) implied by Y1(X3)

Vbias

2.0 1.0

Y(03) =0 = NDRy > NDR,

N1(X3) = x1 + x2X3

Y1(X3) = N1(X3) D Y(X3) = X1X2X3
® Ny(X3) = x1x2

Yz(X?’) = Nz(X?’) D Y]_(XB) = X1X2X3
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How It Works for: Y(X3) = x1X3 + x2x3

repeat step 2: calculate smallest unate function N3(X®) implied by Y, (X3)

2.0 1.0
* Y(03) =0 = NDRy > NDR,
° N1(X3) = X1 + X2X3

Y1(X3) = Ni(X) @ Y(XP) = x1xoX3
* N2(X3) = xixo 2.0 2.0
2(53) = N3(X3) @ V1 (X?) = xpxoxs > £

3(X3) = x1x2x3
X

Y3 3) = N3(X3) D Yz(XB) =0 N2(Xi

°
= <
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How It Works for: Y(X3) = x1X3 + x2x3

max n iteration needed

Vbias
2.0 1.0 }%

Ny (Xf

Y(0%) = 0 = NDRy > NDR,

N1(X3) = X1 + X2X3

Y1(X3) = N1(X3) D Y(X3) = X1X2X3

o Nz(Xa) = X1X2 >
.0

Yz(X?’) = Nz(X?’) D Y]_(XB) = X1X2X3 X

3(X3) = x1x2x3

Y3(X3) = N3(X3) @ ¥2(X3) =0 Nz(Xi

°
=

Y(X) = N1(X®) © N2(X*) @ N3 (XP)
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Algorithm Properties

e at most n iteration needed

e at most n + 2 branches needed

® no need to use complementary transistors pair
e input - function in SOP form

e output - set of SOP switching functions

| [ 21 ] [4] [ Our
Theoretical no. of branches
< 2" < <
in GTG circuit =2 sn+2 sn+2
Synthesis algorithm no yes yes
Input function form N/A Reed-Muller SOP
No. of branches <2
- <
in synthesized circuit N/A (<n+2onaverage) | — n+2
No. of iterations n
in algorithm’s main loop N/A o(2") o(n)
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Possible Improvement

e assumption N;(X)N4;(X) = Ni4;(X) restricts number of
possible solutions
e when released other solutions exist

129 122
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different number of switching elements -8 vs. 5
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Conclusion

GTG switching functions can be synthesized directly from SOP
form

there are at most n + 2 branches in the circuit

algorithm gives the best known solution in terms of number of
branches

further improvements are possible
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