The 15th Asia and South Pacific

Design Automation Conference
January 21, 2010

Generalised Threshold Gate Synthesis based on
AND/OR/NOT
Representation of Boolean Function

—

‘%1? Marek A. Bawiec (speaker), Maciej Nikodem
Wroctaw University of Technology

NDRs in MOBILE Logic Circuits

@ 1 Vias() © 1
|
L T
Vbias =
(B) g o
NDR, —
load |
ouT ~
NDRy
driver

NDR Negative Differential Resistance
MOBILE Monostable-Bistable Transition Logic Element

2 of 22

NDRs in MOBILE Logic Circuits

@) 1 Vislt) © 1
|
L

Vbias

The simplest function - an inverter

3 of 22

NDRs in MOBILE Logic Circuits

Circuit Structures
e linearly separable Boolean functions
threshold gate (TG)

e any arbitrary Boolean function

o multi-threshold threshold gate (MTTG)
o generalized threshold gate (GTG)

Synthesis Algorithms
¢ no synthesis algorithm for MTTG

e synthesis algorithm for GTG, but:

o input function in Reed-Muller form
o lower number of branches possible
o lower number of switching elements possible

4 of 22

Challenge

New Synthesis Algorithm

 input in SOP form
« improvement of circuit structure
o simpler functions

o lower number of branches

- algorithm efficiency

5 of 22

MTTG vs. GTG

MTTG

X2 1
l Y

.
é wy 723 X
Xo X1
\ !

® each branch - one NDR with
one transistor

® needs different NDRs (weights)

® implements multi-threshold
threshold function directly

number of NDRs increases
quadratically with number of
inputs

6 of 22

GTG

Vo ¢
2.0 1.0 %
Ns(X) Ny (Xf Yoo
2.0 2.0 X
NZ(Xf

each branch - one NDR and serial-parallel
transistors network

uniform NDRs elements but one

implements any n-variable Boolean function

® number of NDRs increases proportionally with

number of inputs

M e L .

GTG - Formal Model

Vmasi

IF: 2.0 2.0 2.0 1.0 }%
* N;j(X)-unate function
e “upper” functions: N;(X) N“‘(X‘) Ns"ﬁ) N‘(Xf Y)

whereimod 2 =1 2.0 2.0 2_0X

“lower” functions: N;(X)
Where I mod 2 - 0 Na(X) NZ(Xf
|
THEN:
0 =0
V(X) = Yioi(X) +N(X) [=2k-1

Y1 (X)N)(X) I =2k

7 of 22

GTG - Formal Model

Vmasi
IF: 2.0 1.0}%
* N;j(X)-unate function
e “upper” functions: N;(X) ~"® — - veo
whereimod 2 =1 20y [EENE
“lower” functions: N;(X)

where imod 2 =0
o N,'(X)N,’_H'(X) = N,‘_H‘(X)

Nz(Xj

THEN: K
Y(X) = @ N;(X)

8 of 22

The Smallest Unate Function

When Y;_1(X) is represented as sum of minterms:
Yii1(X) = UM, (X)),
then

UM X)+U¢:U>1 (X),

where (CU 1(X) is a cofactor of M, 1(X)
When simplified to SOP form, we get N;(X) = UI()1 where I,()1 are
K

positive unate function, therefore N;(X) is also a positive unate
function.

Corollary To obtain N;(X) implied by Y(;_1)(X) it is enough to

remove complemented variables from Y(;_1)(X)
represented in SOP form.

9 of 22

Key Observation

Yo(X) in sum of products (SOP) form

4

repeat until Y;(X) =0

- obtain smallest unate N;(X)
implied by Y;_1(X)

- Yi(X) = Yi_1(X) @ Ni(X)

4

Yo(X) =N1(X) @ N2(X) @ ... © Np(X)

where: N,'(X)N,‘_H(X) = N,'_H'(X)

10 of 22

Proposed Synthesis Algorithm

Require: n-variable Boolean function Y(X)
Ensure: NDR, vs. NDRy, relation, and N;(X) functions

1: if Y(0") = 0 then
2: NDR; > NDRy,
3: else
4: NDR, < NDRy,
5. Y(X)=1&Y(X),
6: end if

7: seti=1,

8: find the smallest unate function N;(X) implied by Y(X),
9: if Y(X) = N;(X) then exit algorithm
10: calculate Y;(X) such that Y(X) = N;(X) ¢ Y;(X),
11: while Y;(X) # 0 do
12: find the smallest unate function Ni;1(X) implied by Y;(X),
13: calculate Y;;1(X) such that Y;(X) = N1 (X) @ Yi11(X),
14: seti=i+1,
15: end while

11 of 22

Proposed Synthesis Algorithm

Require: n-variable Boolean function Y(X)
Ensure: NDR, vs. NDRy, relation, and N;(X) functions

1: if Y(0") = 0 then
2: NDR; > NDRy,
3: else
4. NDR; < NDRy,
5. Y(X) =1 Y(X),
6: end if

7: seti=1,

8: find the smallest unate function N;(X) implied by Y (X),
9: if Y(X) = N;(X) then exit algorithm
10: calculate Y;(X) such that Y(X) = N;(X) & Y;(X),
11: while Y;(X) # 0 do
12: find the smallest unate function Ni;1(X) implied by Y;(X),
13: calculate Y;;1(X) such that Y;(X) = Ni1(X) @ Y1 (X),
14: seti=i+1,
15: end while

12 of 22

Proposed Synthesis Algorithm

Require: n-variable Boolean function Y(X)
Ensure: NDR, vs. NDRy, relation, and N;(X) functions

1: if Y(0") = 0 then

2: NDR, > NDRy,

3: else

4: NDR, < NDRy,

5. Y(X) =1 Y(X),

6: end if

7: seti=1,

8: find the smallest unate function N;(X) implied by Y(X),
9: if Y(X) = N;(X) then exit algorithm

10: calculate Y;(X) such that Y(X) = N;(X) ¢ Y;(X),
11: while Y;(X) # 0 do
12: find the smallest unate function N;1(X) implied by Y;(X),
13: calculate Yi;1(X) such that Y;(X) = N1 (X) @ Yip1(X),
14: seti=i+1,
15: end while

13 of 22

How It Works for: Y(X3) = x1X3 + x2x3

step 1: for Y(0?) setup NDRq and NDR; relation

Vbias
* Y(03) =0 = NDRy > NDR,

14 of 22

How It Works for: Y(X3) = x1X3 + x2x3

step 2: calculate smallest unate function N1 (X3?) implied by Y(X3)

2.0 1.0

Y(03) = 0 = NDRy > NDR,
Nl(XB) = X1 + X2X3

Y1(X3) = N1 (X3) @ Y(X3) = x1x0X3 Ny (XL< Voo

15 of 22

How It Works for: Y(X3) = x1X3 + x2x3

repeat step 2: calculate smallest unate function N>(X?) implied by Y1(X3)

Vbias

2.0 1.0

Y(03) =0 = NDRy > NDR,

N1(X3) = x1 + x2X3

Y1(X3) = N1(X3) D Y(X3) = X1X2X3
® Ny(X3) = x1x2

Yz(X?’) = Nz(X?’) D Y]_(XB) = X1X2X3

16 of 22

How It Works for: Y(X3) = x1X3 + x2x3

repeat step 2: calculate smallest unate function N3(X®) implied by Y, (X3)

2.0 1.0
* Y(03) =0 = NDRy > NDR,
° N1(X3) = X1 + X2X3

Y1(X3) = Ni(X) @ Y(XP) = x1xoX3
* N2(X3) = xixo 2.0 2.0
2(53) = N3(X3) @ V1 (X?) = xpxoxs > £

3(X3) = x1x2x3
X

Y3 3) = N3(X3) D Yz(XB) =0 N2(Xi

°
= <

17 of 22

How It Works for: Y(X3) = x1X3 + x2x3

max n iteration needed

Vbias
2.0 1.0 }%

Ny (Xf

Y(0%) = 0 = NDRy > NDR,

N1(X3) = X1 + X2X3

Y1(X3) = N1(X3) D Y(X3) = X1X2X3

o Nz(Xa) = X1X2 >
.0

Yz(X?’) = Nz(X?’) D Y]_(XB) = X1X2X3 X

3(X3) = x1x2x3

Y3(X3) = N3(X3) @ ¥2(X3) =0 Nz(Xi

°
=

Y(X) = N1(X®) © N2(X*) @ N3 (XP)

18 of 22

Algorithm Properties

e at most n iteration needed

e at most n + 2 branches needed

® no need to use complementary transistors pair
e input - function in SOP form

e output - set of SOP switching functions

| [21] [4] [Our
Theoretical no. of branches
< 2" < <
in GTG circuit =2 sn+2 sn+2
Synthesis algorithm no yes yes
Input function form N/A Reed-Muller SOP
No. of branches <2
- <
in synthesized circuit N/A (<n+2onaverage) | — n+2
No. of iterations n
in algorithm’s main loop N/A o(2") o(n)

19 of 22

Possible Improvement

e assumption N;(X)N4;(X) = Ni4;(X) restricts number of
possible solutions
e when released other solutions exist

129 122

x3 T3

N i P
e M) e P
b Nx) S a A(X)
I e e

different number of switching elements -8 vs. 5

20 of 22

Conclusion

GTG switching functions can be synthesized directly from SOP
form

there are at most n + 2 branches in the circuit

algorithm gives the best known solution in terms of number of
branches

further improvements are possible

21 of 22

The 15th Asia and South Pacific
Design Automation Conference

January 21, 2010

Generalised Threshold Gate Synthesis based on
AND/OR/NOT
Representation of Boolean Function

—

‘l)‘i? Marek A. Bawiec (speaker), Maciej Nikodem
Wroctaw University of Technology

22 of 22

