
The 15th Asia and South Pacific
Design Automation Conference

January 21, 2010

Generalised Threshold Gate Synthesis based on
AND/OR/NOT

Representation of Boolean Function

Marek A. Bawiec (speaker), Maciej Nikodem
Wrocław University of Technology

NDRs in MOBILE Logic Circuits

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.3 0.4

OUT [V]

I
[m

A
]

NDRl

NDRd

OUTb2OUTb1

Vbias
Vbias

Ipd Ipl

NDRd

driver

(C)

OUTm

(A)

I II IIIIV

Vbias(t)

t

Vbias

OUT

NDRl

load

(B)

NDR Negative Differential Resistance

MOBILE Monostable-Bistable Transition Logic Element

2 of 22

NDRs in MOBILE Logic Circuits

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.3 0.4

OUT [V]

I
[m

A
]

NDRl

NDRd

OUTb2OUTb1

Vbias
Vbias

Ipd Ipl

NDRd

driver

(C)

OUTm

(A)

I II IIIIV

Vbias(t)

t

Vbias

OUT

NDRl

load

(B)

x

The simplest function - an inverter

3 of 22

NDRs in MOBILE Logic Circuits

Circuit Structures
• linearly separable Boolean functions

threshold gate (TG)

• any arbitrary Boolean function

◦ multi–threshold threshold gate (MTTG)
◦ generalized threshold gate (GTG)

Synthesis Algorithms
• no synthesis algorithm for MTTG

• synthesis algorithm for GTG, but:
◦ input function in Reed–Muller form
◦ lower number of branches possible
◦ lower number of switching elements possible

4 of 22

Challenge

New Synthesis Algorithm

• input in SOP form

• improvement of circuit structure
◦ simpler functions
◦ lower number of branches

• algorithm efficiency

5 of 22

MTTG vs. GTG

MTTG:

w12w22

w1

w2

w11w12

Y

w0

Vbias

x1

x1x2

x2

• each branch – one NDR with
one transistor

• needs different NDRs (weights)

• implements multi-threshold
threshold function directly

• number of NDRs increases
quadratically with number of
inputs

GTG:

2.02.0

1.0

2.0

Vbias

2.02.0

N3(X) N1(X)

N2(X)N4(X)

Y (X)

2.0

N5(X)

• each branch – one NDR and serial-parallel
transistors network

• uniform NDRs elements but one

• implements any n–variable Boolean function

• number of NDRs increases proportionally with
number of inputs

6 of 22

GTG – Formal Model

IF:
• Ni(X)–unate function

• “upper” functions: Ni(X)

where i mod 2 = 1
“lower” functions: Ni(X)

where i mod 2 = 0

• Ni(X)Ni+j(X) = Ni+j(X)

2.02.0

1.0

2.0

Vbias

2.02.0

N3(X) N1(X)

N2(X)N4(X)

Y (X)

2.0

N5(X)

THEN:

Yl(X) =


0 l = 0
Yl−1(X) + Nl(X) l = 2k − 1

Yl−1(X)Nl(X) l = 2k

7 of 22

GTG – Formal Model

IF:
• Ni(X)–unate function

• “upper” functions: Ni(X)

where i mod 2 = 1
“lower” functions: Ni(X)

where i mod 2 = 0

• Ni(X)Ni+j(X) = Ni+j(X)

2.02.0

1.0

2.0

Vbias

2.02.0

N3(X) N1(X)

N2(X)N4(X)

Y (X)

2.0

N5(X)

THEN:
Y(X) =

k⊕
i=1

Ni(X)

8 of 22

The Smallest Unate Function

When Yi−1(X) is represented as sum of minterms:

Yi−1(X) =
⋃
i

M(i)
i−1(X),

then

Ni(X) =
⋃
i

M(i)
i−1(X) +

⋃
j

C(j)
j−1(X),

where C(j)
j−1(X) is a cofactor of M(i)

i−1(X).

When simplified to SOP form, we get Ni(X) =
⋃
k
I(k)i−1, where I(k)i−1 are

positive unate function, therefore Ni(X) is also a positive unate

function.

Corollary To obtain Ni(X) implied by Y(i−1)(X) it is enough to
remove complemented variables from Y(i−1)(X)

represented in SOP form.

9 of 22

Key Observation

Y0(X) in sum of products (SOP) form

⇓
repeat until Yi(X) = 0

- obtain smallest unate Ni(X)

implied by Yi−1(X)

- Yi(X) = Yi−1(X)⊕ Ni(X)

⇓
Y0(X) = N1(X)⊕ N2(X)⊕ . . .⊕ Nn(X)

where: Ni(X)Ni+j(X) = Ni+j(X)

10 of 22

Proposed Synthesis Algorithm

Require: n–variable Boolean function Y(X)
Ensure: NDRl vs. NDRd relation, and Ni(X) functions

1: if Y(0n) = 0 then
2: NDRl > NDRd,
3: else
4: NDRl < NDRd,
5: Y(X) = 1⊕ Y(X),
6: end if

7: set i = 1,
8: find the smallest unate function Ni(X) implied by Y(X),
9: if Y(X) = Ni(X) then exit algorithm

10: calculate Yi(X) such that Y(X) = Ni(X)⊕ Yi(X),
11: while Yi(X) 6= 0 do
12: find the smallest unate function Ni+1(X) implied by Yi(X),
13: calculate Yi+1(X) such that Yi(X) = Ni+1(X)⊕ Yi+1(X),
14: set i = i + 1,

15: end while

11 of 22

Proposed Synthesis Algorithm

Require: n–variable Boolean function Y(X)
Ensure: NDRl vs. NDRd relation, and Ni(X) functions
1: if Y(0n) = 0 then
2: NDRl > NDRd,
3: else
4: NDRl < NDRd,
5: Y(X) = 1⊕ Y(X),
6: end if

7: set i = 1,
8: find the smallest unate function Ni(X) implied by Y(X),
9: if Y(X) = Ni(X) then exit algorithm

10: calculate Yi(X) such that Y(X) = Ni(X)⊕ Yi(X),

11: while Yi(X) 6= 0 do
12: find the smallest unate function Ni+1(X) implied by Yi(X),
13: calculate Yi+1(X) such that Yi(X) = Ni+1(X)⊕ Yi+1(X),
14: set i = i + 1,

15: end while

12 of 22

Proposed Synthesis Algorithm

Require: n–variable Boolean function Y(X)
Ensure: NDRl vs. NDRd relation, and Ni(X) functions
1: if Y(0n) = 0 then
2: NDRl > NDRd,
3: else
4: NDRl < NDRd,
5: Y(X) = 1⊕ Y(X),
6: end if
7: set i = 1,
8: find the smallest unate function Ni(X) implied by Y(X),
9: if Y(X) = Ni(X) then exit algorithm

10: calculate Yi(X) such that Y(X) = Ni(X)⊕ Yi(X),

11: while Yi(X) 6= 0 do
12: find the smallest unate function Ni+1(X) implied by Yi(X),
13: calculate Yi+1(X) such that Yi(X) = Ni+1(X)⊕ Yi+1(X),
14: set i = i + 1,
15: end while

13 of 22

How It Works for: Y(X3) = x1x2 + x2x3
step 1: for Y(03) setup NDRd and NDRl relation

• Y(03) = 0⇒ NDRd > NDRl

• N1(X3) = x1 + x2x3

Y1(X3) = N1(X3)⊕ Y(X3) = x1x2x3

• N2(X3) = x1x2

Y2(X3) = N2(X3)⊕ Y1(X3) = x1x2x3

• N3(X3) = x1x2x3

Y3(X3) = N3(X3)⊕ Y2(X3) = 0

1.0

2.0

Vbias

Y (X)

Y(X3) = N1(X3)⊕ N2(X3)⊕ N3(X3)

14 of 22

How It Works for: Y(X3) = x1x2 + x2x3
step 2: calculate smallest unate function N1(X3) implied by Y(X3)

• Y(03) = 0⇒ NDRd > NDRl

• N1(X3) = x1 + x2x3

Y1(X3) = N1(X3)⊕ Y(X3) = x1x2x3

• N2(X3) = x1x2

Y2(X3) = N2(X3)⊕ Y1(X3) = x1x2x3

• N3(X3) = x1x2x3

Y3(X3) = N3(X3)⊕ Y2(X3) = 0

1.0

2.0

Vbias

2.0

N1(X)
Y (X)

Y(X3) = N1(X3)⊕ N2(X3)⊕ N3(X3)

15 of 22

How It Works for: Y(X3) = x1x2 + x2x3
repeat step 2: calculate smallest unate function N2(X3) implied by Y1(X3)

• Y(03) = 0⇒ NDRd > NDRl

• N1(X3) = x1 + x2x3

Y1(X3) = N1(X3)⊕ Y(X3) = x1x2x3

• N2(X3) = x1x2

Y2(X3) = N2(X3)⊕ Y1(X3) = x1x2x3

• N3(X3) = x1x2x3

Y3(X3) = N3(X3)⊕ Y2(X3) = 0

2.0

1.0

2.0

Vbias

2.0

N1(X)

N2(X)

Y (X)

Y(X3) = N1(X3)⊕ N2(X3)⊕ N3(X3)

16 of 22

How It Works for: Y(X3) = x1x2 + x2x3
repeat step 2: calculate smallest unate function N3(X3) implied by Y2(X3)

• Y(03) = 0⇒ NDRd > NDRl

• N1(X3) = x1 + x2x3

Y1(X3) = N1(X3)⊕ Y(X3) = x1x2x3

• N2(X3) = x1x2

Y2(X3) = N2(X3)⊕ Y1(X3) = x1x2x3

• N3(X3) = x1x2x3

Y3(X3) = N3(X3)⊕ Y2(X3) = 0

2.0

1.0

2.0

Vbias

2.02.0

N3(X) N1(X)

N2(X)

Y (X)

Y(X3) = N1(X3)⊕ N2(X3)⊕ N3(X3)

17 of 22

How It Works for: Y(X3) = x1x2 + x2x3
max n iteration needed

• Y(03) = 0⇒ NDRd > NDRl

• N1(X3) = x1 + x2x3

Y1(X3) = N1(X3)⊕ Y(X3) = x1x2x3

• N2(X3) = x1x2

Y2(X3) = N2(X3)⊕ Y1(X3) = x1x2x3

• N3(X3) = x1x2x3

Y3(X3) = N3(X3)⊕ Y2(X3) = 0

2.0

1.0

2.0

Vbias

2.02.0

N3(X) N1(X)

N2(X)

Y (X)

Y(X3) = N1(X3)⊕ N2(X3)⊕ N3(X3)

18 of 22

Algorithm Properties

• at most n iteration needed

• at most n + 2 branches needed

• no need to use complementary transistors pair

• input – function in SOP form

• output – set of SOP switching functions

[2] [4] Our

Theoretical no. of branches ≤ 2n ≤ n + 2 ≤ n + 2
in GTG circuit

Synthesis algorithm no yes yes

Input function form N/A Reed-Muller SOP

No. of branches
N/A

≤ 2n

≤ n + 2
in synthesized circuit (≤ n + 2 on average)

No. of iterations
N/A O(2n) O(n)

in algorithm’s main loop

19 of 22

Possible Improvement

• assumption Ni(X)Ni+j(X) = Ni+j(X) restricts number of
possible solutions

• when released other solutions exist

different number of switching elements – 8 vs. 5

20 of 22

Conclusion

• GTG switching functions can be synthesized directly from SOP
form

• there are at most n + 2 branches in the circuit

• algorithm gives the best known solution in terms of number of
branches

• further improvements are possible

21 of 22

The 15th Asia and South Pacific
Design Automation Conference

January 21, 2010

Generalised Threshold Gate Synthesis based on
AND/OR/NOT

Representation of Boolean Function

Marek A. Bawiec (speaker), Maciej Nikodem
Wrocław University of Technology

22 of 22

