
Institute for Integrated Signal Processing Systems

MPSoC Programming using the
MAPS Compiler

Rainer Leupers, Jeronimo Castrillon,
Institute for Integrated Signal Processing Systems

RWTH Aachen University, Germany

ASP-DAC
Taipei, Jan. 2010

2ASP-DAC Jan. 2010, © J. Castrillon

Motivation: MPSoCs and the Productivity Gap

� Multi-Processor Systems on Chip are a reality
� Increased HW and SW complexity

� The productivity Gap: Requirements double every 10
months, HW/SW productivity every 2 years (Ecker, Mueller,
Doemer, 2008)

���� Need better support for SW development in the MPSoC era

SoC Consumer Portable Design
Complexity Trends (ITRS 2007)

SoC Consumer Portable Design
Complexity Trends (ITRS 2007)

Fujitsu, MPSOC 2009Fujitsu, MPSOC 2009

3ASP-DAC Jan. 2010, © J. Castrillon

MAPS: Bridging the Productivity Gap

� MAPS: MPSoC Application Programming Studio:
� Flexible input specification: 85% of embedded

programmers use C/C++ (www.eetimes.com)
� Legacy C-code and partitioning
� Explicitly parallel C-like programming model (KPN)

� Abstraction & retargetability:
� Abstract APIs for early SW design
� Code generation hides HW dependent SW

� Functional validation:
� Abstract simulator (HVP), no processor-specific

tool chains involved
� Mapping & Scheduling frameworks:

� Manage the huge design space
� Multiple application of different classes (real-time, best

effort)

Source: Virtual Platform of Shapes
RDT, SSS RWTH Aachen

Source: Chen, NTU,
MPSoC 2008

4ASP-DAC Jan. 2010, © J. Castrillon

Outline

� Motivation

� MAPS Overview

� Sequential and Parallel Flows

� Results

� Conclusions and Outlook

��

5ASP-DAC Jan. 2010, © J. Castrillon

Seq.KPNs

ApplicationsArch. Model

Analysis

Profiling & Tracing

Seq. Partitioning

Parsing (.c, .cpn)

MAPS Flow Overview

� Architecture model for
retargetability

� Applications:
� C code for legacy
� Parallel code to leverage

a-priori knowledge

� Analysis Phase:
� Profile-driven

� Interactive

� Mapping/Scheduling:
� Extensible

� Cost-table driven
performance estimation

� Multiple Application
� Interaction through ACG

� Composition approach

� Different app. classes

Multi-applications
• App. concurrency

graph (ACG)
• Real-time constraints
• PE class preferences

Run-time Info
• OS Primitives
• Low level APIs

HVP
simulator

Mapping & Scheduling

Performance
Estimation

Mapping

Scheduling

Code Generation

Multi-app. Analysis

Execution
• Real Silicon / Virtual Platforms

6ASP-DAC Jan. 2010, © J. Castrillon

MAPS: Graphical User Interface

7ASP-DAC Jan. 2010, © J. Castrillon

Outline

� Motivation

� MAPS Overview

� Sequential and Parallel Flows

� Results

� Conclusions and Outlook

��

8ASP-DAC Jan. 2010, © J. Castrillon

Sequential Flow: How it started…

MAPS @ DAC’08

� Sequential flow as presented
in DAC 2008

� Key points:
1. Analysis phase: Traces for

Dynamic Data Flow Analysis

2. New analysis granularity:
“Coupled” blocks as opposed to
basic-blocks, functions,…

3. Performance estimation:
annotated 3-address-code IR
via cost table

4. Heuristic for hierarchical code
partitioning

� Simple code generation for TCT
platform (TiTech, Tokyo)

� Execution on TCT virtual/real
platform

NPCB GraphNPCB GraphCBs

Sequential
C Code

C Front-end Trace Gen.

IR Trace

WSCDFG

Static/Dynamic Analysis

CB Gen.

Task Gen.

Architecture
Description

Tasks

Code Gen.

Parallelized
C Code for TCT

Analysis

Partitioning

Code
Emission

MAPS

9ASP-DAC Jan. 2010, © J. Castrillon

Sequential Flow: Improvements

� Analyze Strongly Connected Components (SCC): improv es
parallel efficiency, i.e. less PEs – similar executio n time

� SCCs are recognized and a heuristic is used to merge
blocks in order to improve the parallel efficiency

� Especial care of nested SCCs

A

B

C
Control flow
Data flow

BA

C

BA

C

BA

PE: 1 2 3

tim
e

BA

C

BA

C

BA

PE: 1 2 3

tim
e

S
pa

re
 P

E

10ASP-DAC Jan. 2010, © J. Castrillon

Sequential Flow: Improvements (2)

� Balance partitions of functions in different locati ons of the
Call Graph

Control flow
Data flow

A

B

D

C

In partition i

10

10

20

40

In partition i-1

D’

D’’

PE: 1 2 3 4

B
…

B

C

C

C

D

D

…

A

A

tim
e

C

C

D’

D’

D’’

D’’

…

A
B

A
B

PE: 1 2 3 4

tim
e

11ASP-DAC Jan. 2010, © J. Castrillon

Parallel Flow: Input Specification

� Dataflow programming models gain everyday more
acceptance… Which to use?
� HSDFs, SDFs, MRDFs, CFDF, KPN…

� MAPS programming model: Based on the Kahn Process
Networks (KPN) Model of Computation (MoC)
� Better expressiveness compared to other models
� Simple semantics
� More difficult to analyze and derive plausible schedules

� Although comparable when handling multiple
applications

p1 p2 p3 vs.
a1 a2 a33 1 2 3

6 2

12

e1 e3

e2

e4

12ASP-DAC Jan. 2010, © J. Castrillon

Parallel Flow: Input Specification (2)

� Pragma extensions to represent KPN applications. Ex. RLE
Decoding:

� GUI equivalent editor/viewer:

13ASP-DAC Jan. 2010, © J. Castrillon

Parallel Flow

� Parallel flow, details to appear in
DATE Mar. 2010

� Key points:
1. Intermediate pthread code

generation for tracing

2. “Sequentialized” processes
analyzed by traditional MAPS

3. KPN tracer generates KPN traces
4. Modular framework for scheduling

and mapping: RR, RRWS, priority-
based, FIFO,…

5. TRM allows to compare different
schedules

� The scheduler descriptor can be
used to generate code directly

14ASP-DAC Jan. 2010, © J. Castrillon

Parallel Flow: What is a KPN Trace?

� A sequential trace is a series of basic blocks
� The KPN tracer identifies in which BBs channels were

accessed

� A trace is a sequence of segments, where a segment is a
sequence of BBs with a channel access in its last BB

P
write O

read II O

…

2

4

6

2

1

2

5

6

3

4

7

Compile time CDFG of P
8

5
read I

write O

∆t(PE)

E
xe

cu
tio

n
tim

e

15ASP-DAC Jan. 2010, © J. Castrillon

Handling Multiple Applications

� Applications organized into classes:
� Hard/soft real time
� Best effort

� The Application Concurrency Graph (ACG) serves to
describe the interaction among applications

� Use-case analysis via composition:

Source: Chen,
NTU, MPSoC

2008

� A sub-graph of the ACG represent a
use-case or multi-application scenario

� Schedules for different applications are
computed separately

=

)()()(tgtfth ⊕=

Composed utilization

)(tf)(tg

⊕

Utilization App1 Utilization App2

PE1
PE2

16ASP-DAC Jan. 2010, © J. Castrillon

Outline

� Motivation

� MAPS Overview

� Sequential and Parallel Flows

� Results

� Conclusions and Outlook

��

17ASP-DAC Jan. 2010, © J. Castrillon

Results: Sequential Flow

� New partitioning passes: a toy example

T1

T2

T3

T4
T5

T1 T2 T3 T4 T5

c)

T’1

T’2

T’3

T’4

T’5

T’1 T’2 T’3 T’4 T’5

In toy example: 3.27X vs. 2.38X

In JPEG: 3.61����5.5X vs. 4.1����9.5X

In toy example: 3.27X vs. 2.38X

In JPEG: 3.61����5.5X vs. 4.1����9.5X

18ASP-DAC Jan. 2010, © J. Castrillon

Results: Parallel & Overall Flow

� The parallel flow has been tested on
several real life applications:
� MPEG2, JPEG, GSM, MIMO,…

� MAPS usability fully tested:
� Parsing/tracing/profiling
� Functional validation

� Later verification on different
back-ends
� TI-OMAP, TCT, OSIP

Source:

www.ti.com

19ASP-DAC Jan. 2010, © J. Castrillon

Outline

� Motivation

� MAPS Overview

� Sequential and Parallel Flows

� Results

� Conclusions and Outlook��

20ASP-DAC Jan. 2010, © J. Castrillon

Conclusions and Outlook

� MAPS – A fairly complete tool set for MPSoC programmi ng
was presented:
� Sequential (C) & parallel (KPN) input specification
� Abstraction: functional simulation, APIs
� Mapping & scheduling of single and multiple applications to

heterogeneous MPSoCs
… in a user friendly Eclipsed-based GUI

� Current & future work in MAPS
� C extensions instead of pragmas, aka: CPN
� Compiler development: CLANG, LLVM
� Better performance estimation techniques: TotalProf
� Improving mapping and scheduling heuristics
� Research on composability for KPNs

21ASP-DAC Jan. 2010, © J. Castrillon

Thank You!
Questions??

Acknowledgments:
This work has been supported by the UMIC (Ultra High-Speed Mobile
Information and Communication) research centre. www.umic.rwth-aachen.de

The team:

maps@iss.rwth-aachen.de

