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Introduction

m Accurate interconnect/via/package models esp.
in high frequency simulation to capture EM
effects

m Compact & efficient macromodels for simulation
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Introduction

Data pre-
processing

m Tabulated data of input-output response
— Electromagnetic data

— Time / frequency

— Calculation / measurement

Export Model post-
netlist processing

s Macromodel requirement: Accurate, causal, stable,
passive



Existing algorithms

s Frequency-domain Vector Fitting (VF) [99]

— Iterative continuous frequency domain approximation
(p input ports, g output ports)

=T - - S

s Time-domain Macromodeling Techniques

— Approximation using (truncated) time-sampled system
response < Easier to capture

_ e.g. 4SID [99], GPOF [99], TD-VF(z) [03,08]



Problems Issues and Alternatives

s Numerical-sensitive calculation
— Affected by the initial poles, noisy signal

m Require eigenvalues calculation
m Unstable pole flipping > Not an accurate approx.
s High (multiport) computation complexity

m Other techniques has much higher computation
complexity (Expensive SVD computation)

= Digital IIR filter approximation - Macromodeling
SISO LS [ISCAS 08] »>

m Implication: finite-length discrete response sequences ...
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Least-Squares Approximation

Macromodeling of a time-sampled response =/ 1IR
Approx. of FIR filter

Problem: Approximation - Interpolation problem
- Input / Output description of an allpass filtering
operation - Designing an allpass operator
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Find P(z) Suppose Q(z) Known

Walsh’'s  z,=, z, =1/, 7, =1l a,,-+, 7, =1l
Theorem: P(z) _ po+ pZt++pyz™
Q(Zi) 1+qlzi_l+"'+qNZi_N

=F(z), i=01---,N

AzZ)=F(z)- gg; = 0= |A(z)|, minimized!

Finding z’s can be numerically ill. Smarter way making
use of the FIR nature of F(z), we can rewrite A(z) as

. Z—(N+1)Q(Z—1)
Q(z)

Z—(N+1)Q(Z—1) R(Z) . F(Z _@
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Equivalent Filtering Problem

Complementary Signal: All-pass

filter!

For the first L time Instances

-1 fi2 ... = 2"QEH)/Q2) @ fi f 4




Finding Numerator P(z)

_ Z—(N+1)Q(Z—1) R(Z) ) F(Z _@

A
) @) Q(2)

L1
Easily prove that H A(Z)Hz — Zrlz
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Complementary Signal

s Adopted from [YH62]

Original Signal

Approximating
Signal

Allpass
Filtering

Error Signal
(Need to minimize!l!)



Finding Denominator Q(z)

For the first L time instances

l1:|_ l1:|_.1 ..... 11:1 11:0 M I’|_l-1 II'|_.2 I;l I;o
1 1 1 1
0 1 L-1 L 0 1 L-2 L-1

*Find Q(z) such that energy output of the all-pass filter
A(z)=zNQ(z")/Q(z) is concentrated in time = L,

Recall Q(z)=1+q,z " +---+qy2 "
Define Q%(z)=1
QY () =1+9" 2 +qMz 2 +...+qPz"

_ 1 q®) L qk) 51 (k)5 ~(N-1)
=1+7 (q1 +0, 2 +--+Qy’Z )

=1+27"Q!(2)



Finding Q(z) by Iterations

Q¥ (2)=1
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Finding Q(z) by Iterations

- x®(0)
x® (1)
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~b™ has minimum norm
By iterations, Q(k)(z) converges to Q(z)
What's amazing: Q"(z) is always stable!




Finding Q(z) by Iterations
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Automatically u(k):=A"“q" —b"™ has minimum norm
By iterations, Q)(z) converges to Q(z)
What's amazing: Q"(z) is always stable!



Convergence of VISA

m Calculation of Q(

z) is a simplification of Steiglitz-

McBride (SM) iteration without initial guess
— P(2) is not required for the calculation of Q(z)

SM iteration



Model order selection

s Appropriate model order (N) for efficient and
accurate simulation

s Similar pattern between approximant error and
Hankel singular value (HSV) of the impulse response

m HSV distribution and the ratio of first and last HSV




P-norm approximation

= Modify the minimization criteria to suit different
macromodeling requirements

— P-norm approximation
— User-defined norm approximation
— Norm-constrained approximation

mi”:Z:HA(k) (z,) = minHB(k)q(k) _d(k)Hp
~min Q<k1>1(zn) pHQ(k)(Zn)H (2)-P¥(z,)|.

= Applying convex programming for solving



MIMO VISA Extension

s Walsh’s theorem can be applied to MIMO situation
m Stacking the responses into a column for LS solving

B d) ‘ Single-port
response
B |- |
(k) (k)
_BP,CI_ _dPQ_
m Less computation complexity

— TD-VF: O((pa+1)N2Lpg) < Much higher!
— VISA: O(N4Lpq)



VISA Features

= No eigenvalue computations

= No initial guess required
— Less initial-pole-sensitive calculation

s Guaranteed stable pole calculation
= Converge to the near-L, optimal solution
s Low (multi-port) computation complexity

= ~norm approximation for different modeling
requirement

m Quasi-error bound for model order selection
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Numerical Examples

m Three-port counterwise RF circulator

m More accurate : 18% less avgerage R.M.S. error
after convergence

m Faster : >15X faster for convergence and >17/X
faster to achieve a -40dB accuracy
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Numerical Examples

m HSV (error bound) computation: 58 sec. CPU time

m A-norm approximation

— 3.5% L, error, 29.5% L. error and 24.5% CPU time
reduction

s Four benchmark examples [IG08]
— 51% less L, error, >21 X faster, comparing to TD-VF

—HSV
— MIMO VISA
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Conclusion

m VISA: Linear Macromodeling using time-
sampled response

— Simplified Steiglitz-McBride algorithm
— No initial-pole assignment:

— No eigenvalues calculation

— Robust and efficient computation

— P-norm approximation




Thank youl!

Thank you!
Questions are welcome
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Walsh Theorem

s Among the set of rational functions H(z)=P(z)/Q(z),
with prescribed poles a,, @, . . ., a, that are fixed
and located in |Z] <1, thezbest approximation in the
LS sense to F(2) (analytic in |Zz] > 1 and continuous

in |2l = 1) is the unique function that interpolates to
F (2) in all the points. z= o, 1/a*, , 1/a*, . . .,
1/a*,, where * denotes complex conjugate

m Approximation
- Interpolation problem

- Input / Output description of an allpass
filtering operation

- Design of an allpass operator



Complementary Signal

s Adopted from [YH62]

Original Signal

_

Approximating
Signal

Allpass
Filtering

Error Signal
(Need to minimize!l!)
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