ASPDAC 2010(UDC) in *Taipei*

Cascaded Time Difference Amplifier using Differential Logic Delay Cell

<u>S. Mandai¹</u>, T. Nakura², M. Ikeda^{1,2}, and K. Asada^{1,2}

¹ Dept. of Electrical Engineering and Information Systems ² VLSI Design and Education Center(VDEC) The University of Tokyo

Time-of-Flight (Pulse based method)

Time-to-Digital Converter

• A chain of buffers and flip-flops are often used

• As scaling of Tr., time resolution is higher

- 180nm : about 30ps
 - > 90nm : about 15ps
 - ▶ 65nm : about 10ps
- Minimum time resolution is limited by a buffer delay(gate delay)

Time Difference Amplifier to Realize Fine Resolution TDC

- There are many methods to realize sub-gate delay
 - The Vernier TDC(Large area)
 - Passive interpolation(Low resolution)
- The TDC using time difference amplifier(TDA can realizes high resolution with small area

Conventional TDA

✓ Advantage

✓ Drawback

- Open loop structure (M. Lee, VL2007)
 - ✓ High gain
 - Simple structure
 - Sensitive to PVT variation => Fatal Drawback
- Closed loop structure(T. Nakura, VL2009)
 - Strong to PVT variation
 - Low gain

Can be solved!!

weak in circuit noise =>

Proposed Cascaded Time Difference Amplifier using Differential Logic Delay Cell

- High TD gain
- Strong to periodic noise, cross talk and realize high resolution

Measurement Result of In-Out TD

7