Optimizing Blocks in an SoC Using
Symbolic Code-Statement
Reachability Analysis

Hong-Zu Chou
January 21, 2010

Hong-Zu Chou, National Taiwan Univ., Taipei, Taiwan
Kai-Hui Chang, Avery Design Systems, Inc., Andover, MA, USA
Sy-Yen Kuo, National Taiwan Univ., Taipei, Taiwan

Motivation

* The use of Intellectual Properties (IPs)
In System-on-Chip (SoC) circuits has
become a common design practice recently

e To accelerate the circuit design process
e To reduce design cost

* Unnecessarily large design blocks may exist in the final
chip because the blocks may contain unused functions

— Code blocks for unused functions occupies more die area and
consumes unnecessary power after synthesis

Optimizations should be applied to find and remove
the unused logic from the reused design blocks

Our Contributions

* A methodology that reuses existing
verification environments or surrounding
blocks for circuit optimization

— Utilize abundant external don’t-cares that exist
In the environment

— Perform hardware/software co-optimization

Legal inputs == Optimization

_) Optimized
design

3

External DCs ==

Our Contributions (cont.)

* A new algorithm that utilizes high-level
symbolic simulation to perform formal
code-statement reachability analysis

— Accurately identify redundant code that
should be removed

— Operate on higher-level code instead of
gate-level netlists
 The changes are easier to understand and verify

 Removing one line of RTL code can eliminate
thousands of gates

Our Contributions (cont.)

* An innovative synthesis construct called
sym_wait that can accelerate symbolic
simulation

— Verify the latency of different symbolic traces
and then merge them

— Provide additional checks for latency-related
problems in testbenches or design

Outline

e Preliminaries

 Circuit optimization using
constrained-random testbench

e Implementation insights
« Experimental results
e Conclusions

Don’t-Cares (Xs)

 Don’t-Cares in logic synthesis
— Controllability Don’t-Cares (CDCs)
— Observability Don’t-Cares (ODCs)

o X-pessimistic and X-optimistic characteristics
In logic simulation

b=1;c=1; always @(*)
Output=(a &b) | (—a & c); if (sel) y=a;
else y = b;

abc

[an

Logic simulation can not work
for code reachability analysis

OO0 |9 |

Il
X 0] X x|| X X

Example of X-Pessimism Example of X-Optimism

Symbolic Simulation Primer

« Symbolic simulation considers all possible
executions paths of a system simultaneously

« Symbolic variables are used In the simulation
state representation in order to index multiple
executions of the system

 Constrained random verification
environments can be used directly for

symbolic simulation
.E’h16617262
“a*b” + “b+c”

16’ha38b “aZ

16’h2308 “b™—

16’nh3282 “cZ

Problem Formulation

« Given a design containing:
— N conditional code blocks

— A constrained-random testbench that can generate all
sets of possible input patterns

e Goal

— Remove unused blocks and produce a smaller
RTL design based on the given input constraints

Idea: Perform code statement reachability analysis
to identify unused blocks, and then remove them

O U

@p

eudo Code and Example of
A Ctatnarmaoant Danarlhalhhilityvs Arnalvie:s
ut otatcilliclit ncavliavlility Alladly ol

N

event = event_queue.pop();
curr_sym_cond = event.sym_cond;
while execute statement triggered by event
if statement is a conditional block with condition cond
curr_sym_cond &= cond;
do not execute statment if curr_sym_cond is proven to be O;
else if leaving conditional block with condition cond
restore curr_sym_cond by removing cond as constraint;
else if a new event nevent needs to be generated
nevent =>sym_cond = curr_sym_cond;
event_queue.add(nevent);
statement = statement.next;

O 00 NO Ul WN -

N
N B O

10

S1:
S2:
S3:

S4:
S5:
S6:

always @ (cond, i1, i2) begin
if (cond) begin

a=il;

Sdisplay(“Important debugging message”);
end else

#la=i2;
Sdisplay(“Execution finished”); end
always @(a) b="aq;

cond ==true event_queue.push();
event=@ (cond, i1, i2)
statement =52

curr_sym_cond=1 & (cond ==true)
nevent = @a

event_queue={@a}
statement.next=S3

event=@ (cond, i1, i2)
curr_sym_cond=1& (cond ==true)
statement =53
curr_sym_cond=18tecerd==true}

statement.next=S5

event_queue.pop();

event=@ (cond, i1, i2)
statement =51
curr_sym_cond=1 & cond
statement.next=cond?52:54

%

cond ==false event_queue.push();
event=@ (cond, i1, i2)
statement =54
curr_sym _cond=1 & (cond ==false)
nevent = @a
curr_sym_cond=1 &teond-==fglse}
event _queue={@a}
statement.next=55

¥

event=@ (cond, i1, i2)
statement =55
curr_sym_cond=1

¥

’ event_queue.pop(); event_queue.pop();
event=@ (cond, i1, i2) event = @a event = @a
statement =S5 » statement =S6 statement =S6
11
curr_sym_cond=1 curr_sym_cond=1 curr_sym_cond=1

Constrained-random
testbench

Symbolic reachability analysis
1) Replace Srandom with symbols
2) Code statement reachability analysis

Remove unreachable code

/ Ozzz?ézr]ed Logic synthesis

12

Combining Logic and Symbolic Simulation

e Logic simulation is extremely fast for random simulation
— Incomplete corner-case coverage
— X-pessimistic and X-optimistic

 Formal analysis can ensure the correctness of
reachability analysis

1. Perform logic simulation for a period of time to
identify the conditional blocks that are reachable

2. Use symbolic simulation to check all conditional blocks
that are still not reachable

Greatly reduce the use of formal analysis and
achieve better performance

Merging symbolic traces using sym_wait

Sym_wait can be easily embedded in design/testbench,

providing a more efficient way to perform symbolic simulation

always @ (cond, i1, i2) begin
S1: if (cond) begin

S2: a=il;
S3: Sdisplay(“Important debugging message”);
end else

E,____________. ---------- LS4 #la=i2;
i sym_wait(0) --+--> . " e ”
l S5: Sdisplay(“Execution finished”); end

S6: always @(a) b="g;

S3 S5
(cond==true) (cond== true) (cond== true)

S6
(cond== true),

I

|

I

1

I

|

I

@ 1
a I
< S5 I

(cond==false) i (cond==false) !
I

|

I

1

I

S6

¢ (cond==false),

Ensuring the Correctness of Optimizations

« Symbolic simulation can only ensure the correctness
and the completeness of verification within
the simulated cycles

e Proof by induction

— If the state in the last simulated cycle is a subset of any
state before the last cycle, then the properties verified to
hold for the simulated cycles will hold forever

« Example: symbolic code-statement reachability analysis for
DLX, a 32-bit RISC microprocessor with 5-stage pipeline

" . VI
All possible states

i Symbolic
Symbolic can be reached y £l SIEIE; S

simulation S simulation (subset of S,)
for 7 cycles A for 7 cycles

Initial State, S,

(all general registers
were symbols

Symbolic simulation for 14 cycles is enough to
ensure the correctness of customized design 15

Case Study: Crossbar switch

e Characteristics
— Contains two input ports and two output ports

— Forwards a packet from any input to any output based on
Its priority bit and a round-robin arbitration scheme

 Performance issue of symbolic simulation

— Different payload sizes require different numbers of cycles
to transmit

Simulation traces for different delays can not be merged,
degrading the efficiency of symbolic simulation

o Effectiveness of sym_ wait
Connects a driver and a receiver through a FIFO

S Truntime | emory Consumption
Without sym wait 1525 394
With sym_wait 442 219
Reduction Ratio 71% 44% 16

Case Study: DLX Processor

» Characteristics
— A 32-bit RISC microprocessor with 5-stage pipeline

— A simplified version of the MIPS architecture and provides a
good reference point for verification

Instruction allowed (DLX) #Cond. | #Cells | Reduction | Timing
blocks ratio slack

13902 2659 ps
NOP 1 sec 122 2426 81.4% 1248 ps
ADD, ADDI, NOP 100 min 148 7793 68% 1563 ps
ADD, ADDI, SW, LW, NOP 103 min 168 9240 29.4% 1606ps
ADD, ADDI, SW, LW, SRL, 97 min 176 11170 14.7% 2306 ps
SLL, SRA, BEQ, NOP
ADD, ADDI, AND, ANDI, XOR, 138 min 208 12661 3.3% 2596 ps

SLT, SLTI, SW, LW, SRL, SLL,
SRA, BEQ, BNE, J, JAL, NOP

17

Case Study: Alpha Processor

 Characteristics

— A processor which includes 64-bit registers, instructions and datapaths

Instruction allowed (DLX) #Cond. | #Cells | Reduction | Timing
Blocks ratio slack

31381 3269 ps
NOP 1 sec 98 1339 95.7% 747 ps
ADDQ, MULQ, CMPEQ, NOP 25 min 120 27941 10.9% 3240 ps
ADDQ, MULQ, CMPEQ, LDQ, STQ, 24,5 min 127 28300 9.8% 3280 ps
NOP
ADDQ, MULQ, CMPEQ, LDQ, STQ, 185 min 142 30265 3.7% 3268 ps
JMP, BSR, SRL, SLL, SRA, NOP
ADDQ, SUBQ, MULQ, MPEQ, 15.5min 149 32195 -2.6% 3298 ps
CMPULE, LDQ, STQ, JMP, RET, BSR,
SRL, SLL, SRA, AND, BIS, XOR, NOP
ADDQ, SUBQ, CMPEQ, CMPULE, 15.5min 146 20476 34.7% 1848 ps

LDQ, STQ, JMP, RET, BSR, SRL,
SLL, SRA, AND, BIS, XOR, NOP

18

Conclusions

« Code-statement reachability analysis using high-level
symbolic simulation

— More accurate than logic simulation
— More scalable and effective than gate-level approaches
e Sym_wait to accelerate symbolic simulation
— Easily embedded in design/testbench
— Provides additional checks for latency-related problems
— Avoids trace explosion problem
 Methodology that can reuse existing verification
environments for circuit optimization
— More flexible
— Allows hardware/software co-optimization

— Optimizes designs in SoC environments,
both in terms of gate count and timing slack

19

