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Introduction — Motivation

m Analog circuits’ behaviors vary dramatically
with changes in prameters

= MOSFET parameters, temperature, etc.
= Performance, correctness

m Circuits’ resiliency under uncertainties
= Process variation, noise, efc.

m How to deal with uncertainties?



Introduction — Problem

m “Does the design satisfy the property with
probability p 2 threshold 6?”
m Monte Carlo: estimate the probability p
" How good is the estimate?
m Property : Bounded Linear Temporal Logic (BLTL)

m Statistical Model Checking (SMC)

* Recently applied to Stateflow/Simulink models!']
= Probabilistic Guarantees

= Bayesian Hypothesis Testing

= Bayesian Estimation

[1] P. Zuliani, A. Platzer and E. M. Clarke, “Bayesian Statistical Model
Checking with Application to Stateflow/Simulink Verification,” in
HSCC 2010.



Background — Assumptions

m Monte Carlo Simulation
= Draw independent and identically distributed (i.i.d.)

sample traces

= Characterize each simulation trace as Pass/Fail

M = © with probability p

Property @

Biased coin

Bernoulli Random Variable Y
P(Y=1)=p
P(Y=0) = 1-p



Background — Bayesian Statistics

'Perform Experiments Sequentially

s Experimental Results

{Pass,Fail,Pass,Pass,...}

Bayes Factor

Prior density of p-
(Beta Distribution

Posterior density of p 6
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Background — Bayesian Statistics

m Null hypothesis H,(pz26)

m Alternative hypothesis H,(p<0)
= P(H,), P(H;) sumto 1
m X: experimental results

m Bayes Factor p _ PEXIH()%
P(X|Hq

m Jefferys’ Test [1960s]

= Fixed Sample Size
= Bayes Factor > 100 : Strongly supports H,
= Sequential Version (Fixed Bayes Factor Threshold)




Statistical Model Checking — Algorithm

Require: Property P,y(®), Threshold T 2 1, Prior density g

n:=0 {number of traces drawn so far}
x:=0 {number of traces satisfying ® so far}
repeat

o .= draw a sample trace of the system (iid)

n:=n+1

if o |= @ then

x=x+1
endif

B := BayesFactor(n, x, 6, g)
until (B>T vB<1/T)
if (B > T) then
return “H, accepted”
else
return “H, rejected”
endif




Bounded Linear Temporal Logic

States: State Variables
m Atomic Propositions (AP): e, ~ e,
" e,, e, arithmetic expressions over state variables,
~ e {<,5,>,2,=}
m Syntax ¢ = AP @, v @, | =0 |F'9|G'g
m Let o= (syty), (s 1), . . . be a simulation trace of
the model
= stays in s, for duration t..

o o - 6 0 0.
0 1 Kk

X <

m oX: suffix trace of o starting at state k

- Uk = (Skftk)f (Sk+11tk+1)1--- 0



Bounded Linear Temporal Logic

m The semantics of BLTL for suffix trace o*
(trace starting at state k):
= o= AP iff atomic proposition AP is true in state s,
" okE@ Vv iff 0“E @ orof =P,
" gkE—g iff 0K E ® does not hold
" gfEF! ¢ Iff eX|stS|>Ost Z| oka Stand o8 = @

@ tk ' —>®H tk+iU \Q T

<

1:k+1

time bound t

= Fl0ns] (Vout>1)

= Within 10ns, Vout should eventually be larger than 1

volt.
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Bounded Linear Temporal Logic

m The semantics of BLTL for suffix trace ok

(trace starting at state k): g
= ok=G'g iff foralli=0s.t. D> b Stk e @

& O ® &
S SO S S SN O S
@ tk \4/ tk+1 . | tk+i %/ .
<

time bound t
= GU10ns] (Vout>1)
= |n the next 10ns, Vout should always be greater than 1 volt.
m Nesting Operators
| F[100ns]G[10ns] (VOUt>1)

= Within 100ns, Vout will be greater than 1 volt and stay
greater than 1 volt for at least 10 ns.
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An Example : OP amp

Sl

Vout
= SR=10Meg




An Example : OP amp — Specifications

Vdd Vdd Specifications
[

1 Input Offset Voltage <1mV
]}*4[ E 2 Output Swing Range 0.2Vto1V
| 3 Slew Rate > 25 V/uSec
In- - Qut
" %; ;}Jm - 4 Open-Loop Voltage > 8000 V/V
Gain
Vbias %[ Vbias{[ 5 Loop-Gain Unit-gain >10 MHz
Frequency

= = 6 Phase Margin > 60°

14



Example : OP amp — Specifications

m Specifications : Quantities computed from
simulation traces

" in most cases, can be translated to BLTL directly from
definitions

m e.g. Swing Range:
= Max(Vout) > 1V and Min(Vout) < 0.2V
" F[100pS](Vout < 02) A F[100pS](Vout > 1)

= “Within entire trace, Vout will eventually be greater than
1V and smaller than 0.2V”

= 100ps : the end time of transient simulation

15



Example : OP amp — Specifications

m Frequency-domain properties?
= Transient response 0 = (Sy,t;), (S4,t,),(Sx15),--.
= Frequency response g = (Sy,f,), (S4,1,),(S»15), ..
m Substitute frequency-stamps for time-stamps
= Specify frequency domain properties in BLTL
= Check with the same BLTL checker
= Semantics Changed

= Gl1GHzZlp :p holds for all frequencies from current to
1GHz larger

= Fl1GHzlg ¢ holds for some frequency from current to
1GHz larger

16



An Example : OP amp - Specifications
BLTL Specifications

Specifications ( Transient)

1 Input Offset Voltage

2 Output Swing Range
3 Slew Rate

<1mV

0.2Vto1V

> 25 V/uSec

FL100usl(\/_ . = 0.6) A
G[100Ms]((vout =0.6) = (|Vins = Vin| <
0.001))

FL100usl(V_ , < 0.2) A FI100sI(V_ > 1)

GHO0MSI( (Vi = 1 A Vi, > 0.65) — FI0008KSI(V, , = 0.8)) A

((V.

out

Specifications ( Frequency-domain )

4 Open-Loop Voltage Gain > 8000 V/V

5 Loop-Gain Unit-gain
Frequency

6 Phase Margin

>10 MHz

> 60

=0.2 A V,, <0.55) — FI0-008usl(yy_ . =0.4)))

BLTL Specifications
Gl'KHzl(\/ mag,,, > 8000)
GUOMHz)(V mag,, > 1)

FI19GHzl(\/ mag ;= 1) A
GUOSH( (V mag,, = 1) —
(Vphase,, >60°) )

17



Experimental Setup

m Platform: Linux virtual machine running on a
2.26GHz i3-350M, 4GB RAM computer

m We model-check the BLTL formulae on
previous slides

" e.g. (Swing Range)
HO:M F PZG[F“OONS](Vout < 02) A F[1OOMS](Vout > 1)]

18



Experimental Results
m Target yield: 0.95

m Monte Carlo analysis:

= do not satisfy /satisfy yield threshold
Monte Carlo (1000 samples) — Measured Value

Specifications Mean Stddev Yield
1 Input Offset Voltage (V) 436  .597 .826
2 Swing Range Min (V) 104 .006 1.00

Swing Range Max (V) 1.08 .005 1.00

3 Negative Slew Rate (V/uSec) -40.2 1.17 1.00

Positive Slew Rate (V/uSec) 56.4 2.54 1.00
4  Open-Loop Voltage Gain (V/V) 8768. 448 975
5 Loop-Gain UGF (MHz) 19.9 .30 1.00

6 Phase Margin () 64.1 .44 1.00
19



Experimental Results
m Statistical Model Checking

= Null Hypothesis (H,): From Specs,

"e.g. HpM E P, [FI100sl(\/_ < 0.2) A F[100RsI(\/_ > 1)]
= Probability Threshold 6: Set to Target Yield
= Bayes Factor Threshold T: Test Strength Needed

= T =1000 : Probability of error is less than 0.001

4

= Prior Distribution of p

= Uniform : No idea ol

251
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Experimental Results
m Monte Carlo : do not satisfy /satisfy yield threshold 0.95

m SMC testing result : Prior: Uniform, T =1000, 8 = 0.95
reject / accept null hypothesis

Monte Carlo (1000 samples) — Measured Value SMC(0=0.95)
Specifications Mean Stddev Yield Samples/Runtime
1 Input Offset Voltage (V) 436 .597 826 31/39s
2 Swing Range Min (V) 104 .006 1.00 77/98s

Swing Range Max (V) 1.08 .005 1.00 77/98s

3 Negative Slew Rate (V/uSec) -40.2 1.17 1.00 77/98s
Positive Slew Rate (V/uSec) 56.4 2.54 1.00 77/98s

4 Open-Loop Voltage Gain (V/V) 8768. 448 975 239/303s
5 Loop-Gain UGF (MHz) 19.9 .30 1.00 77/98s

6 Phase Margin (") 64.1 .44 1.00 77/98s
21



Experimental Results

m Prior: uniform, T = 1000, 0 in [0.7, 0.999]
= SMC testing result : reject / accept null hypothesis

1 M= PZG[F[mous](Vout = 06) N G[100“s]((vout = 06) - (lVin+ B Vin—|<o-001 ))]
2 M= PZG[F[mo“s](Vout < 02) N F[100“s](vout > 1)]

3 M=PgGMOsI( (Vo =1 AV, >0.65) — 008UV, <0.8)) A
(Vo < 0.2 AV, < 0.55) — Fl0-008usl(y_ < 0.4)))]

ut

Probability threshold 6

Spec 0.7 0.8 0.9 0.99 0.999
1 77/105s 9933/12161s 201/275s 10/13s 7/9s
2 16/18s 24/27s 44/51s 239/280s 693/813s

3 16/23s 24/31s 44/57s 239/316s 693/916s
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Experimental Results

m Prior: uniform, T = 1000, 0 in [0.7, 0.999]

= SMC testing result : reject / accept null hypothesis

4 M= P,[Gl'KRzl(Vmag,,, > 8000)]
5 M= Py [GIMHE(Vmag,,, > 1)]
6 M= P, [Fl"0CH(Vmag, , = 1)AG10®HZ((Vmag,,=1)— (Vphase,,>60"))]

Probability threshold 6

Spec 0.7 0.8 0.9 0.99 0.999
4  23/26s 43/49s 98/114s 1103/1309s 50/57s
5 16/18s 24/28s 44/51s 239/279s 693/807s

6 16/20s 24/30s 44/55s 239/303s 693/882s

23



m Statistical Model Checking is faster when

= The threshold probability 6 is away from the
unknown probability p,

- p~ 1 (NEEERTEETNTS

Samples 239 693

m Easily integrated in the validation flow
= Relies only on Monte Carlo sampling and SPICE

= Add-ons: Online BLTL monitoring, Bayes factor
calculation

= | ow computation overhead

= Runtime dominated by SPICE simulation

24



m Introduced SMC to analog circuit verification

= Avoid Monte Carlo simulation drawing unnecessary
samples when evidence is enough.

m Demonstrated the feasibility of using BLTL
specifications for a simple analog circuit

= BLTL can specify complex interactions between signals

m Future Works
= More experiments

= larger examples with more complicated
specifications

= |ntroducing the technique of importance sampling

25



m Thank you.

26



Bayesian Statistical Model Checking

m Suppose M satisfies ¢ with (unknown)
probability p

= pis given by a random variable (defined on [0,1]) with
density g

= g represents the prior belief that M satisfies ¢

m Generate independent and identically distributed
(iid) sample traces o4,...,0,

m X ={x,,....x.}, x: the i sample trace o satisfies ¢
s x=1iff0; FE ¢ x=0iff 05 = @

m Then, x; will be a Bernoulli trial with conditional
density (likelihood function) : f(x|u) = u*(1 — u)'-

27



Statistical Model Checking

m Calculate Bayes Factor using posterior and
prior probability

P(X|Hy) P(Ho|X) P(H)

P(X|H,) P(H,|X) P(H)

m Posterior density (Bayes Theorem) (cond.
iid Bernoulli’s)

Sl u) - flan | W) g(u)

Jo @i [v) Kz | v) - g(v) dv
~N
Likelihood function

flu|xr,...,xy) =

28



Statistical Model Checking

mH,;:p26,H;: p<86,
m Prior Probability (g: prior density of p)
P(H,) =7, = [ gdu  P(H,)=[ gwdu=1-z,

m Bayes Factor of sample X={x,,...,x..}, and
hypotheses H,, H, is
P(H,|X) P(H) _ ; P ) 104 [W)-g(udu |7
P(H, [ X) P(Ho)  ["f(x |u)--F(x |u)-gu)du 7o

J0

29



Beta Prior

= Prior g is Beta of parameters a>0, >0

Vuemﬂ}gwwwﬁzfmimua%l_mﬂl

-1

B(a, ) :/ tr 1 — )7t
0

= F..() is the Beta distribution function (i.e., Prob(X < u))

Flo (1) = /O ot 3) dt



Why Beta priors?

= Defined over [0,1]
= Beta distributions are conjugate to Binomial distributions:

= |f prior g is Beta and likelihood function is Binomial
then posterior is Beta

= Suppose likelihood Binomial(n,x), prior Beta(a,3): posterior
AUl XXy = fxglu) - - - fixalu) - g(u)
= uX(1 = u)™x- ue-1(1 = u)p-
= yxra-1(1 = y)nxp-1
where x =2, X

= Posterior is Beta of parameters x+a and n-x+f3
07/16/09



Beta Density Shapes
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Computing the Bayes Factor

m Proposition

m The Bayes factor of HyM}= P.,(®) vs H:M
P_.,(®) for n Bernoulli samples (with x<n
successes) and prior Beta(a,)

B _ 1— 0 . ( 1 B 1)
o F(:U—I—oz,n—a:—l—ﬁ) (6))

m where F_ (") is the Beta distribution function.

0 zta— n—x+0—
F(x—|—oz,n—x—|—5) (9) — B(:U—I—oz,}z—x—l—ﬁ) fO '™ 1<1 - ’LL) L du




Bayesian Interval Estimation - IV

width 28\

0\ L L 1 L 1 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 15+

prior 1s beta(o=4,3=5) ol

| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

posterior density after 1000 samples and 900 “successes”
1s beta(a=904,3=105) posterior mean = 0.8959



Related Work — Monte Carlo Simulation

m A random variable X with unknown
distribution f(x) p=P(X >1)
m Monte Carlo is a statistical method to

estimate probability of an event (such as X
> t) under unknown distribution.

m The goal is to find p=E{I(X >t}]

Puc =ﬁzl(xi >t)—p I(X>t)={
N
m The Monte Carlo method generates N
independent samples of X (X,, ...,X) to
form a estimate of p

I, x>t
0, otherwise

35



Related Work — Importance Sampling

m Importance Sampling samples from a biased

distribution that the rare event happens more
often. Let f(x) is the density of X, f*(x) is the density of X*

p=E{I(X >t}]

= [ 1(x>1) f (x)dx W(x) = f*(X)
f (X

- : | (x>1) ff*(();)) f " (x)dx

=E{I(X">tW(X")]
m Sampling from a biased random variable X*,
IS estimator:

Pis =ﬁZN:W(Xi*)| (Xi >1)

36



Bayesian Interval Estimation - V

Require: BLTL property ®, interval-width o, coverage c,
prior beta parameters a,f3

n:=0 {number of traces drawn so far}
x:=0 {number of traces satisfying so far}
repeat

o .= draw a sample trace of the system (iid)

n:=n+1

if oF @ then

X =x+1
endif

mean = (x+a)/(n+a+p)

(t,,t;) = (mean-d, mean+0)

| := PosteriorProbability (t,,t,,n,x,a,B)
until (I > ¢)
return (t,t,), mean



Bayesian Interval Estimation - VI

m Recall the algorithm outputs the interval
(t01t1)

m Define the null hypothesis

mH, t,<p<t,

m Theorem (Error bound). When the Bayesian
estimation algorithm (using coverage 2< ¢
< 1) stops — we have
Prob (“accept H,” | H,) £ (1/c -1)1r/(1-11,)

Prob (“reject H,” | H,) < (1/c -1)1r,/(1-11,)
m T, is the prior probability of H,




