16th Asian Pacific Design Automation Conference

Analog Circuit Verification by Statistical Model Checking

Author Ying-Chih Wang (Presenter)

Anvesh Komuravelli

Paolo Zuliani

Edmund M. Clarke

Date 2011/1/26

This work is sponsored by the GigaScale Systems Research Center, Semiconductor Research Corporation, National Science Foundation, General Motors, Air Force and the Office of Naval Research

Overview

- Introduction
- Background
 - Assumptions
 - Bayesian Statistics
- Algorithm
- Application to Analog Circuits
 - Bounded Linear Temporal Logic
- Experimental Results
- Discussion
- Conclusion and Future Work

Introduction – Motivation

- Analog circuits' behaviors vary dramatically with changes in prameters
 - MOSFET parameters, temperature, etc.
 - Performance, correctness
- Circuits' resiliency under uncertainties
 - Process variation, noise, etc.
- How to deal with uncertainties?

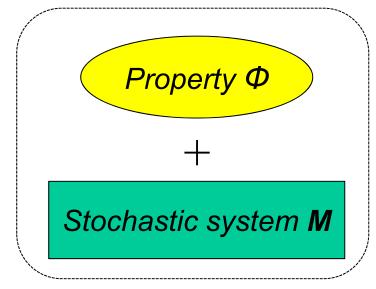
Introduction – Problem

- "Does the design satisfy the property with probability p ≥ threshold θ?"
 - Monte Carlo: estimate the probability p
 - How good is the estimate?
 - Property : Bounded Linear Temporal Logic (BLTL)
- Statistical Model Checking (SMC)
 - Recently applied to Stateflow/Simulink models^[1]
 - Probabilistic Guarantees
 - Bayesian Hypothesis Testing
 - Bayesian Estimation
- [1] P. Zuliani, A. Platzer and E. M. Clarke, "Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification," in HSCC 2010.

Background – Assumptions

Monte Carlo Simulation

- Draw independent and identically distributed (i.i.d.) sample traces
- Characterize each simulation trace as Pass/Fail



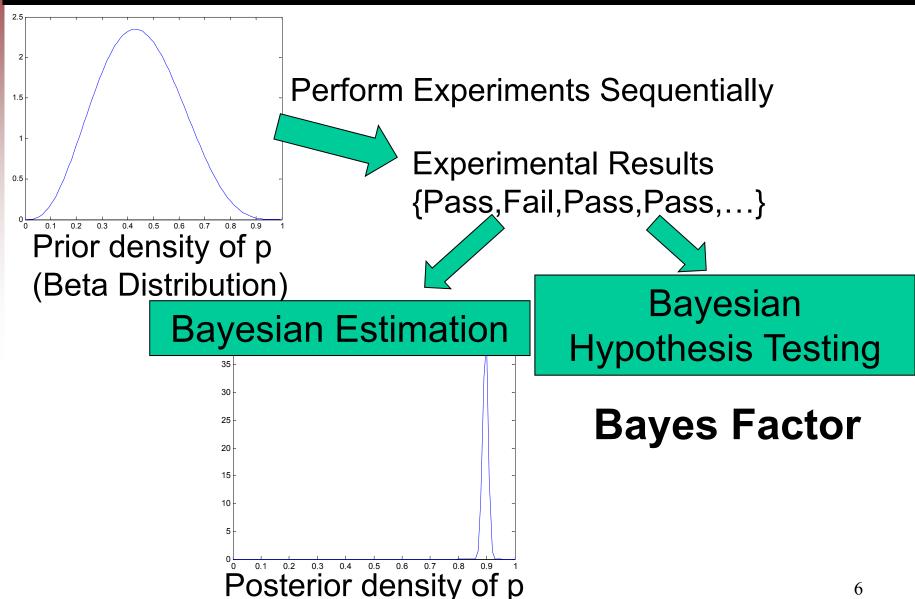
 $\mathbf{M} \models \Phi$ with probability p

Biased coin

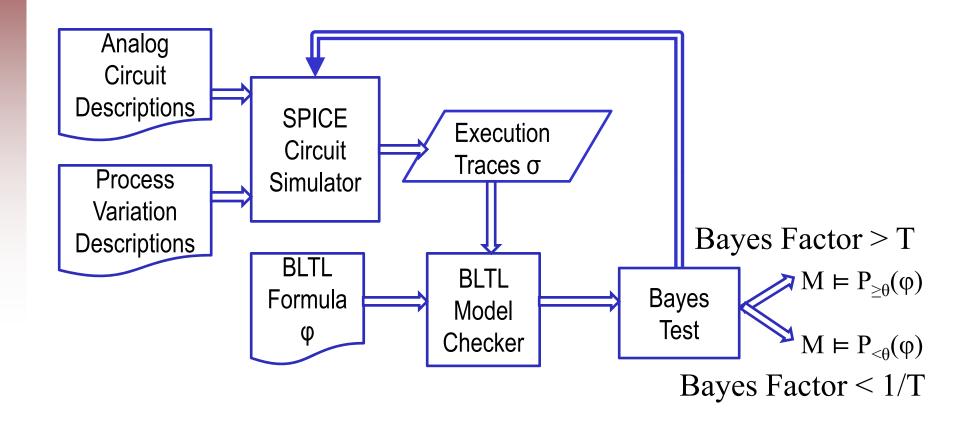
Bernoulli Random Variable Y
$$P(Y=1) = p$$

$$P(Y=0) = 1-p$$

Background – Bayesian Statistics



Overview - Analog Circuit Verification



Background – Bayesian Statistics

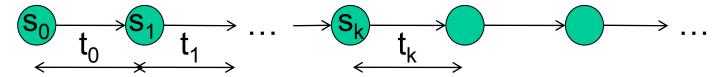
- Null hypothesis H₀(p≥θ)
- Alternative hypothesis $H_1(p<\theta)$
 - $P(H_0)$, $P(H_1)$ sum to 1
- X: experimental results
- Bayes Factor $B = \frac{P(X|H_0)}{P(X|H_1)}$
- Jefferys' Test [1960s]
 - Fixed Sample Size
 - Bayes Factor > 100 : Strongly supports H₀
 - Sequential Version (Fixed Bayes Factor Threshold)

Statistical Model Checking – Algorithm

```
Require: Property P_{\geq \theta}(\Phi), Threshold T \geq 1, Prior density g
n := 0
                 {number of traces drawn so far}
                 \{number\ of\ traces\ satisfying\ \Phi\ so\ far\}
x := 0
repeat
      \sigma := draw a sample trace of the system (iid)
      n := n + 1
      if \sigma \models \Phi then
        x := x + 1
       endif
      B := BayesFactor(n, x, \theta, g)
until (B > T v B < 1/T)
if (B > T) then
                             Theorem (Error bounds). When the
   return "Ho accepted"
                            Bayesian algorithm – using threshold
else
                             T – stops, the following holds:
   return "H<sub>0</sub> rejected"
                                     Prob ("accept H_0" | H_1) \leq 1/T
endif
                                     Prob ("reject H_0" | H_0) \leq 1/T
```

Bounded Linear Temporal Logic

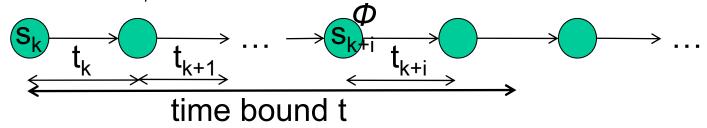
- States: State Variables
- Atomic Propositions (AP): e₁ ~ e₂
 - e₁, e₂: arithmetic expressions over state variables,
 ~ ∈ {<,≤,>,≥,=}
- Syntax $\phi ::= AP \mid \phi_1 \lor \phi_2 \mid \neg \phi \mid F^t \phi \mid G^t \phi$
- Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be a simulation trace of the model
 - stays in s_i for duration t_i.



- σ^k : suffix trace of σ starting at state k
 - $\sigma^k = (s_k, t_k), (s_{k+1}, t_{k+1}), \dots$

Bounded Linear Temporal Logic

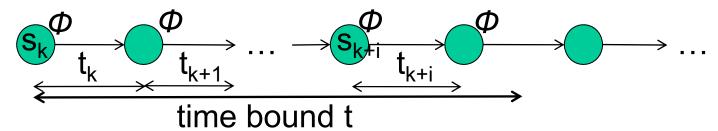
- The semantics of BLTL for suffix trace σ^k (trace starting at state k):
 - $\sigma^k \models AP$ iff atomic proposition AP is true in state s_k
 - $\sigma^k \vDash \phi_1 \lor \phi_2$ iff $\sigma^k \vDash \Phi_1$ or $\sigma^k \vDash \Phi_2$
 - $\sigma^k \vDash \neg \phi$ iff $\sigma^k \vDash \Phi$ does not hold
 - $\sigma^k \models F^t \phi$ iff exists $i \ge 0$ s.t. $\sum_{l=0}^{i-1} t_{k+l} \le t$ and $\sigma^{k+i} \models \Phi$



- **F**^[10ns] (Vout>1)
- Within 10ns, Vout should eventually be larger than 1 volt.

Bounded Linear Temporal Logic

- The semantics of BLTL for suffix trace σ^k (trace starting at state k):
 - $\sigma^k \models G^t \phi$ iff for all $i \ge 0$ s.t. $\sum_{l=0}^{i-1} t_{k+l} \le t$, $\sigma^{k+i} \models \Phi$

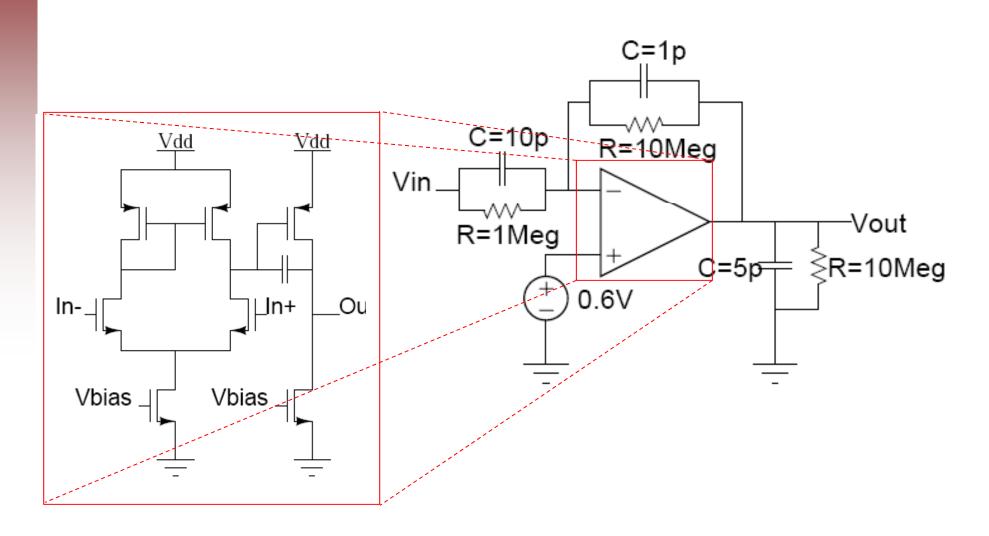


- **G**^[10ns] (Vout>1)
- In the next 10ns, Vout should always be greater than 1 volt.

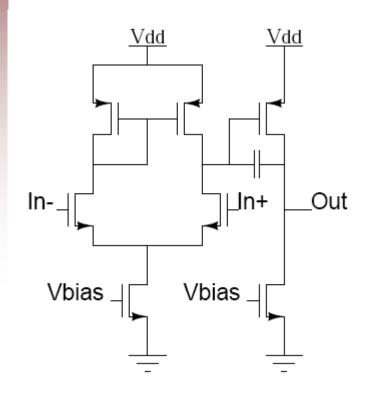
Nesting Operators

- **■ F**^[100ns]**G**^[10ns] (Vout>1)
- Within 100ns, Vout will be greater than 1 volt and stay greater than 1 volt for at least 10 ns.

An Example: OP amp



An Example: OP amp – Specifications



	Specifications						
1	Input Offset Voltage	< 1 mV					
2	Output Swing Range	0.2 V to 1 V					
3	Slew Rate	> 25 V/µSec					
4	Open-Loop Voltage Gain	> 8000 V/V					
5	Loop-Gain Unit-gain Frequency	> 10 MHz					
6	Phase Margin	> 60°					

Example: OP amp – Specifications

- Specifications : Quantities computed from simulation traces
 - in most cases, can be translated to BLTL directly from definitions
- e.g. Swing Range:
 - Max(Vout) > 1V and Min(Vout) < 0.2V</p>
 - $F^{[100\mu s]}(V_{out} < 0.2) \land F^{[100\mu s]}(V_{out} > 1)$
 - "Within entire trace, Vout will eventually be greater than 1V and smaller than 0.2V"
 - 100µs: the end time of transient simulation

Example: OP amp – Specifications

■ Frequency-domain properties?

- Transient response $\sigma = (s_0, t_0), (s_1, t_1), (s_2, t_2), ...$
- Frequency response $\sigma = (s_0, f_0), (s_1, f_1), (s_2, f_2), \dots$

Substitute frequency-stamps for time-stamps

- Specify frequency domain properties in BLTL
- Check with the same BLTL checker
- Semantics Changed
 - G^[1GHz]φ :φ holds for all frequencies from current to 1GHz larger
 - F^[1GHz]φ :φ holds for some frequency from current to 1GHz larger

An Example : OP amp – Specifications

Specifications (Transient)			BLTL Specifications			
1	Input Offset Voltage	< 1 mV	$F^{[100\mu s]}(V_{out} = 0.6) \land G^{[100\mu s]}((V_{out} = 0.6) \rightarrow (V_{in+} - V_{in-} < 0.001))$			
2	Output Swing Range	0.2 V to 1 V	$F^{[100\mu s]}(V_{out} < 0.2) \land F^{[100\mu s]}(V_{out} > 1)$			
3	Slew Rate	> 25 V/µSec				
	$\begin{aligned} \textbf{G}^{\text{[100}\mu\text{s]}}(\ ((\text{V}_{\text{out}} = 1 \land \text{V}_{\text{in}} > 0.65) \rightarrow \textbf{F}^{\text{[0.008}\mu\text{s]}}(\text{V}_{\text{out}} = 0.8)) \land \\ ((\text{V}_{\text{out}} = 0.2 \land \text{V}_{\text{in}} < 0.55) \rightarrow \textbf{F}^{\text{[0.008}\mu\text{s]}}(\text{V}_{\text{out}} = 0.4)) \) \end{aligned}$					

Specifications (Frequency-domain)			BLTL Specifications
4	Open-Loop Voltage Gain	> 8000 V/V	$G^{[1KHz]}(V \text{ mag}_{out} > 8000)$
5	Loop-Gain Unit-gain Frequency	> 10 MHz	$G^{[10MHz]}(V \text{ mag}_{out} > 1)$
6	Phase Margin	> 60°	$F^{[10GHz]}(V \text{ mag}_{out} = 1) \land$ $G^{[10GHz]}((V \text{ mag}_{out} = 1) \rightarrow$ $(V \text{ phase}_{out} > 60^\circ))$

Experimental Setup

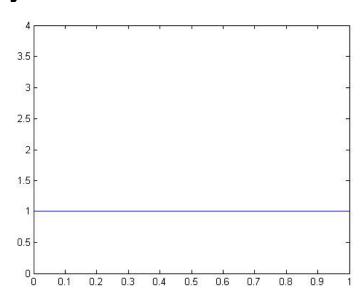
- Platform: Linux virtual machine running on a 2.26GHz i3-350M, 4GB RAM computer
- We model-check the BLTL formulae on previous slides
 - e.g. (Swing Range) $H_0: \mathcal{M} \models P_{\geq \theta}[\mathbf{F}^{[100\mu s]}(V_{out} < 0.2) \land \mathbf{F}^{[100\mu s]}(V_{out} > 1)]$

- Target yield: 0.95
- Monte Carlo analysis:
 - do not satisfy /satisfy yield threshold

Monte Carlo (1000 samples) — Measured Value						
Spe	ecifications	Mean	Stddev	Yield		
1	Input Offset Voltage (V)	.436	.597	.826		
2	Swing Range Min (V)	.104	.006	1.00		
	Swing Range Max (V)	1.08	.005	1.00		
3	Negative Slew Rate (V/µSec)	-40.2	1.17	1.00		
	Positive Slew Rate (V/µSec)	56.4	2.54	1.00		
4	Open-Loop Voltage Gain (V/V)	8768.	448	.975		
5	Loop-Gain UGF (MHz)	19.9	.30	1.00		
6	Phase Margin (°)	64.1	.44	1.00		

Statistical Model Checking

- Null Hypothesis (H₀): From Specs,
 - $e.g. H_0: \mathcal{M} \models P_{\geq \theta}[\mathbf{F}^{[100\mu s]}(V_{out} < 0.2) \land \mathbf{F}^{[100\mu s]}(V_{out} > 1)]$
- Probability Threshold θ: Set to Target Yield
- Bayes Factor Threshold T: Test Strength Needed
 - T = 1000 : Probability of error is less than 0.001
- Prior Distribution of p
 - Uniform : No idea



- Monte Carlo: do not satisfy /satisfy yield threshold 0.95
- SMC testing result : Prior: Uniform, T = 1000, θ = 0.95 reject / accept null hypothesis

M	onte Carlo (1000 samples) — M	$SMC(\theta = 0.95)$			
Sp	pecifications	Mean	Stddev	Yield	Samples/Runtime
1	Input Offset Voltage (V)	.436	.597	.826	31/39s
2	Swing Range Min (V)	.104	.006	1.00	77/98s
	Swing Range Max (V)	1.08	.005	1.00	77/98s
3	Negative Slew Rate (V/µSec)	-40.2	1.17	1.00	77/98s
	Positive Slew Rate (V/µSec)	56.4	2.54	1.00	77/98s
4	Open-Loop Voltage Gain (V/V)	8768.	448	.975	239/303s
5	Loop-Gain UGF (MHz)	19.9	.30	1.00	77/98s
6	Phase Margin (°)	64.1	.44	1.00	77/98s

- Prior: uniform, T = 1000, θ in [0.7, 0.999]
 - SMC testing result : reject / accept null hypothesis

Spec	Null Hypothesis					
1	$\mathbf{M} \models P_{\geq \theta}[\mathbf{F}^{[100\mu s]}(V_{\text{out}} = 0.6) \land \mathbf{G}^{[100\mu s]}((V_{\text{out}} = 0.6) \rightarrow (V_{\text{in+}} - V_{\text{in-}} < 0.001))]$					
2	$\mathbf{M} \models P_{\geq \theta}[\mathbf{F}^{[100\mu s]}(V_{\text{out}} < 0.2) \land \mathbf{F}^{[100\mu s]}(V_{\text{out}} > 1)]$					
3	$\mathbf{M} \models P_{\geq \theta}[\mathbf{G}^{[100\mu s]}(\ ((V_{out} = 1 \land V_{in} > 0.65) \rightarrow \mathbf{F}^{[0.008\mu s]}(V_{out} < 0.8)) \land$					
	$((V_{out} < 0.2 \land V_{in} < 0.55) \rightarrow F^{[0.008\mu s]}(V_{out} < 0.4)))]$					
Samples/Runtime						
Probability threshold $ heta$						
Spec	0.7 0.8 0.9 0.99 0.999					
1	77/105s	9933/12161s	201/275s	10/13s	7/9s	
2	16/18s	24/27s	44/51s	239/280s	693/813s	
3	16/23s	24/31s	44/57s	239/316s	693/916s	

- Prior: uniform, T = 1000, θ in [0.7, 0.999]
 - SMC testing result : reject / accept null hypothesis

Spec	Null Hypothesis							
4	$\mathbf{M} \models P_{\geq \theta}[\mathbf{G}]$	$\mathbf{M} \models P_{\geq \theta}[\mathbf{G}^{[1KHz]}(Vmag_{out} > 8000)]$						
5	$\mathbf{M} \models P_{\geq \theta}[\mathbf{G}]$	$\mathbf{M} \models P_{\geq \theta}[\mathbf{G}^{[10MHz]}(Vmag_{out} > 1)]$						
6	$\mathbf{M} \models P_{\geq \theta}[\mathbf{F}^{[10GHz]}(Vmag_{out} = 1) \land \mathbf{G}^{[10GHz]}((Vmag_{out} = 1) \rightarrow (Vphase_{out} > 60^{\circ}))]$							
Samples/Runtime								
Probability threshold $ heta$								
Spec	0.7 0.8 0.9 0.99 0.999							
4	23/26s	43/49s	98/114s	1103/1309s	50/57s			
5	16/18s	24/28s	44/51s	239/279s	693/807s			
6	16/20s	24/30s	44/55s	239/303s	693/882s			

Discussion

Statistical Model Checking is faster when

The threshold probability θ is away from the unknown probability p,

■ e.g.
$$p \approx 1$$
 θ 0.7 0.8 0.9 0.99 0.999 Samples 16 24 44 239 693

Easily integrated in the validation flow

- Relies only on Monte Carlo sampling and SPICE
 - Add-ons: Online BLTL monitoring, Bayes factor calculation
- Low computation overhead
 - Runtime dominated by SPICE simulation

Conclusion

- Introduced SMC to analog circuit verification
 - Avoid Monte Carlo simulation drawing unnecessary samples when evidence is enough.
- Demonstrated the feasibility of using BLTL specifications for a simple analog circuit
 - BLTL can specify complex interactions between signals
- **Future Works**
 - More experiments
 - larger examples with more complicated specifications
 - Introducing the technique of importance sampling

■ Thank you.

Bayesian Statistical Model Checking

- Suppose M satisfies φ with (unknown) probability p
 - p is given by a random variable (defined on [0,1]) with density g
 - g represents the prior belief that $\mathcal M$ satisfies ϕ
- Generate independent and identically distributed (iid) sample traces σ₁,...,σ_n
- X = {x₁,...,x_n}, x_i: the *i*th sample trace σ_i satisfies ϕ x_i = 1 iff $\sigma_i \models \phi$ x_i = 0 iff $\sigma_i \not\models \phi$
- Then, x_i will be a Bernoulli trial with conditional density (likelihood function) : $f(x_i|u) = u^{x_i}(1-u)^{1-x_i}$

Statistical Model Checking

Calculate Bayes Factor using posterior and prior probability

$$\frac{P(X|H_0)}{P(X|H_1)} = \frac{P(H_0|X)}{P(H_1|X)} \cdot \frac{P(H_1)}{P(H_0)}$$

Posterior density (Bayes Theorem) (cond. iid Bernoulli's)

$$f(u \mid x_1, \dots, x_n) = \frac{f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u)}{\int_0^1 f(x_1 \mid v) \cdots f(x_n \mid v) \cdot g(v) \, dv}$$

Likelihood function

Statistical Model Checking

- H_0 : $p \ge \theta$, H_1 : $p < \theta$,
- Prior Probability (g: prior density of p)

$$P(H_0) = \pi_0 = \int_{\theta}^{1} g(u) du \qquad P(H_1) = \int_{0}^{\theta} g(u) du = 1 - \pi_0$$

■ Bayes Factor of sample $X=\{x_1,...,x_n\}$, and hypotheses H_0 , H_1 is

$$\frac{P(H_0 \mid X)}{P(H_1 \mid X)} \cdot \frac{P(H_1)}{P(H_0)} = \frac{\int_{\theta}^{1} f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u) du}{\int_{0}^{\theta} f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u) du} \cdot \frac{1 - \pi_0}{\pi_0}$$

Beta Prior

• Prior g is Beta of parameters $\alpha > 0$, $\beta > 0$

$$\forall u \in [0,1] \quad g(u,\alpha,\beta) = \frac{1}{B(\alpha,\beta)} u^{\alpha-1} (1-u)^{\beta-1}$$

$$B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$

■ $F_{(\cdot,\cdot)}(\cdot)$ is the Beta distribution function (i.e., Prob(X ≤ u))

$$F_{(\alpha,\beta)}(u) = \int_0^u g(t,\alpha,\beta) dt$$

Why Beta priors?

- Defined over [0,1]
- Beta distributions are conjugate to Binomial distributions:
 - If prior g is Beta and likelihood function is Binomial then posterior is Beta
- Suppose likelihood Binomial(n,x), prior Beta(α,β): posterior

$$f(u \mid x_1, ..., x_n) \approx f(x_1 \mid u) \cdot ... \cdot f(x_n \mid u) \cdot g(u)$$

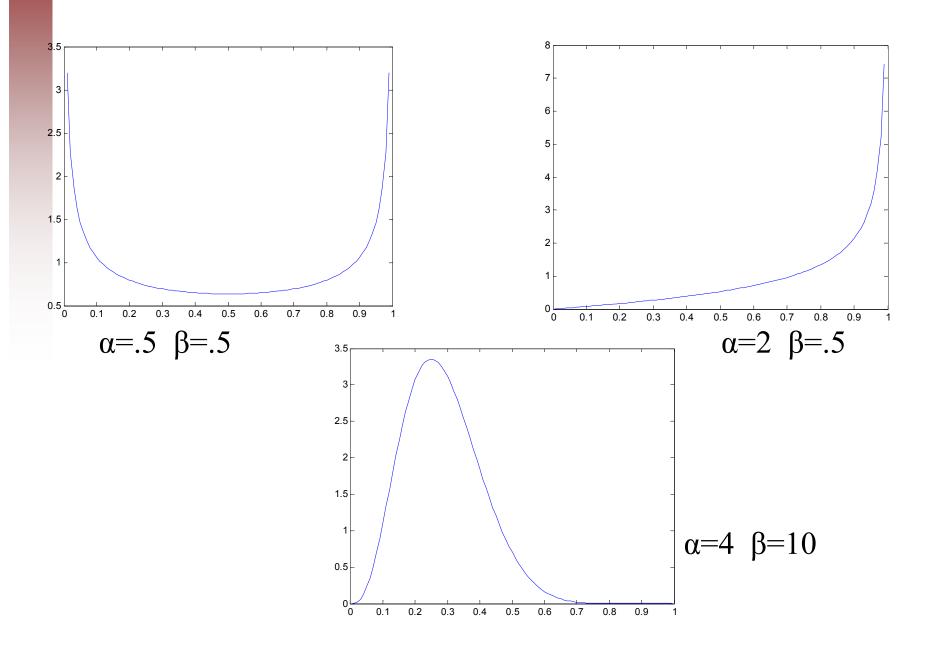
$$= u^x (1 - u)^{n-x} \cdot u^{\alpha - 1} (1 - u)^{\beta - 1}$$

$$= u^{x+\alpha - 1} (1 - u)^{n-x+\beta - 1}$$

where $x = \sum_{i} x_{i}$

• Posterior is Beta of parameters $x+\alpha$ and $n-x+\beta$ 07/16/09

Beta Density Shapes



Computing the Bayes Factor

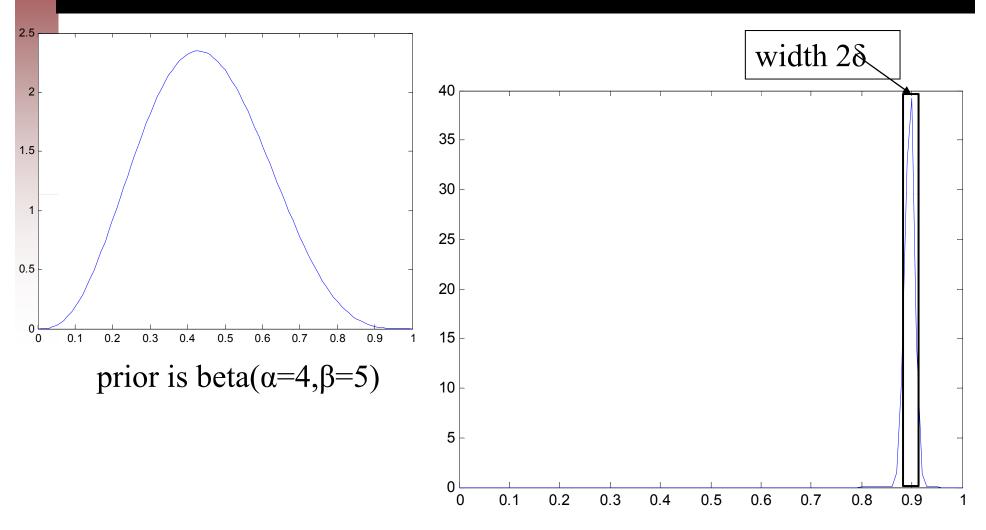
- Proposition
- The Bayes factor of $H_0: \mathcal{M} \models P_{\geq \theta}(\Phi)$ vs $H_1: \mathcal{M} \models P_{<\theta}(\Phi)$ for *n* Bernoulli samples (with *x*≤*n* successes) and prior Beta(α, β)

$$B = \frac{1 - \pi_0}{\pi_0} \cdot \left(\frac{1}{F_{(x+\alpha, n-x+\beta)}(\theta)} - 1 \right)$$

■ where $F_{(\cdot,\cdot)}(\cdot)$ is the Beta distribution function.

$$F_{(x+\alpha,n-x+\beta)}(\theta) = \frac{1}{B(x+\alpha,n-x+\beta)} \int_0^\theta u^{x+\alpha-1} (1-u)^{n-x+\beta-1} du$$

Bayesian Interval Estimation - IV



posterior density after 1000 samples and 900 "successes" is beta(α =904, β =105) posterior mean = 0.8959

Related Work – Monte Carlo Simulation

- A random variable X with unknown distribution f(x) p = P(X > t)
- Monte Carlo is a statistical method to estimate probability of an event (such as X > t) under unknown distribution.
- The goal is to find $p = E\{I(X > t)\}$

$$\hat{p}_{MC} = \frac{1}{N} \sum_{i=1}^{N} I(X_i > t) \to p \qquad I(x > t) = \begin{cases} 1, x > t \\ 0, otherwise \end{cases}$$

■ The Monte Carlo method generates N independent samples of X (X₁, ...,X_N) to form a estimate of p

Related Work – Importance Sampling

■ Importance Sampling samples from a biased distribution that the rare event happens more often. Let f(x) is the density of X, f*(x) is the density of X*
n = E{I(X > t}}

$$p = E\{I(X > t)\}$$

$$= \int I(x > t)f(x)dx$$

$$= \int I(x > t)\frac{f(x)}{f^*(x)}f^*(x)dx$$

$$= E\{I(X^* > t)W(X^*)\}$$

$$W(x) = \frac{f(x)}{f^*(x)}$$

Sampling from a biased random variable X*, IS estimator:

$$\hat{p}_{IS} = \frac{1}{N} \sum_{i=1}^{N} W(X_i^*) I(X_i^* > t)$$

Bayesian Interval Estimation - V

```
Require: BLTL property \Phi, interval-width \delta, coverage c,
prior beta parameters α,β
n := 0
                 {number of traces drawn so far}
x := 0
                 {number of traces satisfying so far}
repeat
        \sigma := draw a sample trace of the system (iid)
        n := n + 1
        if \sigma \models \Phi then
                x := x + 1
        endif
        mean = (x+\alpha)/(n+\alpha+\beta)
        (t_0,t_1) = (mean-δ, mean+δ)
        I := Posterior Probability (t_0, t_1, n, x, \alpha, \beta)
until (1 > c)
return (t_0, t_1), mean
```

Bayesian Interval Estimation - VI

- Recall the algorithm outputs the interval (t_0, t_1)
- **■** Define the null hypothesis
- $\blacksquare H_0: t_0$
- Theorem (Error bound). When the Bayesian estimation algorithm (using coverage ½< c</p>

 stops we have
 - Prob ("accept H_0 " | H_1) $\leq (1/c 1)\pi_0/(1 \pi_0)$ Prob ("reject H_0 " | H_0) $\leq (1/c - 1)\pi_0/(1 - \pi_0)$
- \blacksquare π_0 is the prior probability of H_0