On-Chip Hybrid Power Supply System for Wireless Sensor Nodes

Authors---Wulong Liu, Yu Wang, Wei Liu, Yuchun Ma, Yuan Xie, Huazhong Yang

Presenter: Wulong Liu

Dept. of E.E., Tsinghua Univ., Beijing, China

Background
 Research Proposal
 Research Contents
 Summary
 Reference

Background

1.High energy density2.Environmentalfriendly3.Slow load currentfollowing ability!!

Comparison of Single Power Systems[30]

Char.	Supercap	Сар		FC	Bat
Discharging time	[10 ⁻³ ,1]s	[10 ⁻⁹ ,1]ms		[10,300]hr	[1,10]hr
Lifetime	>30k hr	>100k cycles		1.5-10 khr	150-1500 cycles
Weight	1-2g	1g-10kg		20g-5kg	1g-10kg
Power density	[10, 100] kW/kg	[0.25, 10000] kW/kg	[0.001, 0.1] kW/kg	[0.005, 0.4] kW/kg
Energy density	[1, 5] Wh/kg	[0.01, 0.05] Wh/kg	[300, 3000] Wh/kg	[8, 600] Wh/kg
Max. Output current	100A	1000A	1	50mA/cm2	5A

Background
 Research Proposal
 Research Contents
 Summary
 Reference

Research Proposal

• On chip fuel cell [2], on chip battery [6] and DPM included.

Background Research Proposal Research Contents > System architecture Mathematical modeling > DPM algorithm Simulation Summary Reference

System architecture

Working Principle:

Suppose working at a constant voltage, when load current II<Io, Then extra current, Io-II will be used to charge the rechargeable batteries.

when load current II>Io, then the rechargeable batteries will provide the extra current II-Io.

System architecture

System architecture

- The load and control unit
- (1) Wireless sensor node is used as the load

(2) The control unit is the realization of DPM algorithm

System architecture 3D architecture

• 3D architecture

This system is consisted of on chip power system and wireless sensor node. Wire bonding is used as the interconnection method.

Background Research Proposal Research Contents > System architecture Mathematical modeling > DPM algorithm Simulation Summary Reference

Fuel cells:

According to the I-V characteristic of fuel cells, it is divided into three regions:

(a) Activation polarization, (b) Ohmic polarization,

(c) Concentration polarization [7].

Each region can be modeling by an expression.

• Rechargeable batteries:

According to the real charging and discharging characteristic of batteries[6], two segments can be used to model the charging/discharging characteristics:

$$V = \begin{cases} 0.5 * SOC + 0.8 & 0 < \text{SOC} < 0.2 \\ 0.25 * SOC + 0.85 & 0.2 < \text{SOC} < 1 \end{cases}$$

And, SOC is the State of Charge of the batteries.

$$SOC = \left(\int_0^t \left(I_o - I_l\right) dt\right) / C \max$$

α,

Converting efficiency of FC and DC-DC system

One linear model is used to define the converting efficiency [4]

$$\eta_s = \alpha - \beta I_o$$

Background Research Proposal Research Contents > System architecture Mathematical modeling > DPM algorithm Simulation Summary Reference

DPM algorithm

Goal: For one task, looking for the optimal output current of FCCs, which leads to the minimal fuel consumption.

Optimal object: Fuel consumption within one cycle equals to fuel consumption of Idle state pluses that of Active state.

Minimize:
$$C_{fc}(k) = \operatorname{Ifc} / I(k) * T_I(k) + I_{fc} / A(k) * T_A(k)$$
 ⁽¹⁾

14

 $\langle \mathbf{n} \rangle$

The converting efficiency

$$\eta = (V_o * I_o) / \Delta_{\text{Gibbs}} \approx (V_o * I_o) / (\zeta * I_{\text{fc}})$$
Then,
$$\approx \alpha - \beta I_o$$

$$I_{fc} = (V_o * I_o) / (\zeta * (\alpha - \beta I_o))$$
(2)

Formula (1) can be revised as

Minimize:
$$C_{fc}(k) = (V_o * I_o / I(k)) / (\zeta * (\alpha - \beta I_o(k))) * T_I(k)$$

+ $(V_o * I_o(k)) / (\zeta * (\alpha - \beta I_o(k))) * T_A(k)$ (3)

DPM algorithm

Constraints:

(1)Limit capacity of rechargeable battery:

$$Q_{ini}(k) + (I_o / I(k) - I_l / I(k)) * T_I(k) \leq C_{max}$$

(2)FC Load following ability:

$$I_o \in [0.01, 1]$$

(3)Conversation of charge in rechargeable battery:

 $Q_{ini}(k) + (I_{O/I}(k) - I_{I/I}(k)) * T_{I}(k) = (I_{I/A}(k) - I_{O/A}(k)) * T_{A}(k) + Q_{end}(k)$

Background Research Proposal Research Contents > System architecture Mathematical modeling > DPM algorithm Simulation Summary Reference

simulation platform in Matlab/simulink

• some basic model parameters

Capacity of FCCs	Capacity of rechargeable batteries	Chip area	Thickness of the chip	FCCs open voltage	Output current region of FCCs
500 mAh	2 .0 mWh	1 .0 cm ²	50 um	3.0 V	0.02mA ~ 1.0mA

• Simulation results analysis——the sensor node

• Simulation results analysis——comparison with traditional battery

Power system	Chip area (cm²)	Capacity (mAh)	Energy consumption per cycle(mJ)	Lifetime (year)
Battery (wafer-level) [27]	1	45*2	1.9208	0.374
FC-Bat		500	1.6140	2.475

Background Research Proposal Research Contents > System architecture Mathematical modeling > DPM algorithm Simulation Summary Reference

Summary

- Proposed one on chip fuel cell based hybrid power system
- Proposed the 3D architecture of this on chip fuel cell based hybrid power system
- Proposed a DPM algorithm of fuel cell based hybrid power system for wireless sensor node.
- Build the simulation platform in Matlab/ simulink

- [1]M. Frank, M. Kuhl, G. Erdler, I. Freund, "An Integrated Power Supply System for Low-Power 3.3V Electronics Using On-Chip Polymer Electrolyte Membrane (PEM) Fuel Cells", ISSCC Dig. Tech. Papers, pp. 292 – 293, 2009.
- [2]M. Frank, M. Kuhl, G. Erdler, I. Freund, "An Integrated Power Supply System for Low-Power 3.3V Electronics Using On-Chip Polymer Electrolyte Membrane (PEM) Fuel Cells ", IEEE Journal of Solid-State Circuits, vol.45, no.1, pp. 205-213, 2010.
- [3] Jianli Zhuo, Chaitali Chakrabarti "Maximizing the Lifetime of Embedded Systems Powered by Fuel Cell-Battery Hybrids", *IEEE Trans. VLSI Syst,* vol.17, no. 1, pp. 22 32, 2009.
- [4]Kyungsoo Lee, Naehyuck Chang, Jianli Zhuo, "A Fuel-Cell-Battery Hybrid for Portable Embedded Systems", ACM Trans on Computational Logic, vol. 13, no. 1, Jan. 2008, pp. 1-34.
- [5] Jianli Zhuo, Chakrabarti, C., Naehyuck Chang, Vrudhula, S., "Extending the Lifetime of Fuel Cell Based Hybrid Systems", DAC 2006 43rd ACM/IEEE, pp. 562-567.
- [6]Peter H.L. Notten, Fred Roozeboom, Rogier A.H. Niessen and Loïc Baggetto, "3-D Integrated All-Solid-State Rechargeable Batteries", *Adv. Mater.* 2007, *19*, pp. 4564–4567.
- [7]Goce L. Arsov "Improved Parametric PSpice Model of a PEM Fuel Cell", IEEE OPTIM 2008. 11th. Conference, pp.203-208.
- [8]G Erdler, M Frank "Chip Integrated Fuel Cell", on 19th European Conference on Solid-State Transducers, vol. 132, no. 1, pp. 331-336, 2006.

- [9] Iryna Snihi, William Rey "Battery open-circuit voltage estimation by a method of statistical analysis", on Journal of Power Sources, vol. 159, no. 2, pp. 1481-1487. 2006.
- [10]Lin Yuan, Gang Qu "Analysis of energy reduction on dynamic voltage scaling-enabled systems", IEEE Trans on ICCAD, Vol. 24, no. 12, pp. 1827-1837, Dec. 2005.
- [11] Zhang Yuhua, Qian Longhua "A dynamic frequency scaling solution to DPM in embedded Linux systems", IEEE trans on Information Reuse & Integration, 2009. IRI '09, pp. 256-261.
- [12] Pal, Y., Awasthi, L.K., Singh, A.J. "Maximize the Lifetime of Object Tracking Sensor Network with Node-to-Node Activation Scheme", IEEE on IACC 2009, pp. 1200-1205.
- [13]Benecke, S, Nissen, N.F, Reichl, H "Environmental comparison of energy scavenging technologies for self-sufficient micro system applications", IEEE on ISSST 2009, pp. 1-6.
- [14]Wenzhong Gao "Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain", IEEE Trans. Vehicular Technology, vol. 54, no. 3, pp. 846-855, May 2005.
- [15] C. F. Chiasserini, R. R. Rao "Pulsed battery discharge in communication devices", ACM/IEEE conf. on Mobile computing and networking, pp. 88-95, 1999.
- [16]Boulon, L. Pera "Energetic Macroscopic Representation of a Fuel Cell-Supercapacitor System", IEEE VPPC 2007, pp. 290-297
- [17]Ciancetta, F. Bucci, "System PEM fuel cell-supercapacitor: Analysis in transitory conditions", on 2009 ICCEP, pp. 154-158.

- [18]Boscaino, V. Capponi, "A fuel cell-supercapacitor power supply for portable applications", COMPEL. 2008. pp. 1-4.
- [19]Payman, A. Pierfederici, "Flatness based control of a fuel cell-supercapacitor multi source/multi load hybrid system", EPE '09. 13th European conf. Power Electronics and Applications, pp. 1-10.
- [20]Zhe Zhang Thomsen, "A two-stage dc-dc converter for the fuel cell-supercapacitor hybrid system", on ECCE 2009. IEEE, pp. 1425-1431.
- [21]Wei Li, Joos. G, "A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications", on PESC 2008 IEEE, pp. 1762-1768.
- [22]Yu Zhang, etc, "Small-signal modeling and analysis of battery-supercapacitor hybrid energy storage systems", on PES '09, IEEE, pp. 1-8.
- [23]Pay,S,Baghzouz, Y. "Effectiveness of battery- supercapacitor combination in electric vehicles", on PTC 2003, IEEE, vol. 3.
- [24]Ciancetta, F. etc, "The modeling of a PEM fuel cell-Supercapacitor-battery system in dynamic conditions", on PTC. 2009. IEEE, pp. 1-5.
- [25]Thounthong, P. etc. "Control of fuel cell/battery/ supercapacitor hybrid source for vehicle applications", on ICIT. 2009. IEEE, pp. 1-6.
- [26] Thounthong, P. etc. "Performance evaluation of Fuel cell/Battery/Supercapacitor Hybrid Power Source for Vehicle Applications", on IAS. 2009. IEEE, pp. 1-8.

- [27]Y.-C. Kan, S.-Y. Chiang, etc, "A GPS Anchor Node for Outdoor Wireless Sensor Network Applications", 2009 IEEE International Symposium on Radio-Frequency Integration Technology, pp. 40-43.
- [28] Robert Szewczyk†, Alan Mainwaring, etc. "An Analysis of a Large Scale Habitat Monitoring Application" SenSys'04, November 3–5, 2004.
- [29] Hui Teo, T.; Gin Kooi Lim, etc, "Ultra Low-Power Sensor Node for Wireless Health Monitoring System", pp. 2363-2366.
- [30] Farinaz Koushanfar, "Hierarchical Hybrid Power Supply Networks", DAC'10, June 13– 18, 2010, pp. 629-630.

Thanks!& Best wishes! Q&A?