

A Moment-Matching Scheme for the Passivity-Preserving Model Order Reduction of Indefinite Descriptor Systems with Possible Polynomial Parts

Zheng Zhang and Luca Daniel, Massachusetts Inst. Tech.

Email: <u>z_zhang@mit.edu</u>, <u>luca@mit.edu</u>

Qing Wang and Ngai Wong, the University of Hong Kong

Email: wangqing@eee.hku.hk, nwong@eee.hku.hk

RESEARCH LABORATORY OF ELECTRONICS Massachusetts Institute of Technology **Dept. of Electrical & Electronic Eng.** The University of Hong Kong, Hong Kong S.A.R.

- The composition of "stable" models can be <u>unstable</u>
- But the interconnection of "passive models" is stable.

If the models are not <u>passive</u> they can generate energy, and the timedomain simulation may explode in the connected systems-level simulation!

- A LTI system is passive if H(s) is positive real:
 - 1. H(s) has no poles in Re(s) > 0
 - **2.** $\overline{H(s)} = H(\overline{s})$ for all $s \in \mathbb{C}$
 - **3.** $H(s) + H^*(s) \ge 0$ for all $\operatorname{Re}(s) > 0$

Passive MORs: Moment Matching vs PRBT

Basic MOR Procedures:

1. For positive semi-definite systems, moment matching (e.g., PRIMA) $O(n^2)$

 $E + E^{T} \ge 0, A + A^{T} \le 0, B^{T} = C$

U=*V* (congruence transform) $E_r + E_r^T \ge 0, A_r + A_r^T \le 0, B_r^T = C_r$

2. For indefinite systems, use positive-real balanced truncation, $\cot(n^3)$ need solve two generalized algebraic Riccati equations (coming later...)

Moment matching is more efficient thus preferred ...

1. Indefinite models: passivity is not guaranteed.

2. If *E* is singular, the ROM may be very inaccurate.

Why??

Consider the following passive descriptor system model

$$E \frac{dx}{dt} = Ax + Bu, \quad y = Cx$$

Transfer function

tion
$$H(s) = C(sE - A)^{-1}B = H_{sp}(s) + P(s)$$

Strictly proper Polynomial part
 $H_{sp}(s) = \sum_{i=1}^{m_1} \frac{F_i}{s - p_i}, \quad H_{sp}(j\infty) = 0$
 $P(s) = M_0 + \sum_{k=1}^{m_2} s^k M_k$

P(s) = 0: *H(s)* **is strictly proper.**

The Krylov-subspace based moment matching generates <u>nonsingular</u> E_r , so $H_r(s)$ is strictly proper, and it is inaccurate when H(s) is not strictly proper!!

Practical Examples:

RLC circuits with L-I cutsets or C-V loops; descretized PDEs, linearized MOS circuits, MEMs devices

Polynomial Parts: Simple RLC Examples

AT MIT

Conventional Krylov-subspace moment matching cannot preserve <u>P(s)!!</u>

e Proposed Model Order Reduction Scheme

- 1. Passive Moment Matching for Nonsingular Indefinite Systems
 - □ How to guarantee accuracy?
 - use moment matching to guarantee accuracy.
 - □ How to preserve passivity?
 - Relate the MOR method to positive real lemma.

2. Model Reduction for <u>Singular</u> Descriptor Systems

- How to preserve the possible polynomial part?
- □ How to preserve <u>passivity</u>?

Given the passive indefinite model $E\dot{x} = Ax + Bu$, y = Cx + D

Assume that \boldsymbol{E} is nonsingular and $D+D^T > 0$

Proposed MOR Flow (motivated by Bond ICCAD2008)

Step 1: Construct the right projection matrix V, by any existing q-th order Krylov-subspace moment matching, e.g.

$$\mathbf{V} = \left\{ \left(\mathbf{s}_{0}\mathbf{E} - \mathbf{A} \right)^{-1} \mathbf{B}, \ \left(\mathbf{s}_{0}\mathbf{E} - \mathbf{A} \right)^{-1} \mathbf{E} \left(\mathbf{s}_{0}\mathbf{E} - \mathbf{A} \right)^{-1} \mathbf{B}, \mathbf{L}, \left[\left(\mathbf{s}_{0}\mathbf{E} - \mathbf{A} \right)^{-1} \mathbf{E} \right]^{q-1} \left(\mathbf{s}_{0}\mathbf{E} - \mathbf{A} \right)^{-1} \mathbf{B} \right\}$$

Step 2: Compute the positive real observability Gramian *Qo>=*0, the stabilizing solution to the GARE :

 $\tilde{A}^{T}Q_{o}E + E^{T}Q_{o}\tilde{A} + E^{T}Q_{o}\tilde{B}\tilde{B}^{T}Q_{o}E + \tilde{C}\tilde{C} = 0, \quad \tilde{B} = B\left(D + D^{T}\right)^{-\frac{1}{2}}, \quad \tilde{C} = \left(D + D^{T}\right)^{-\frac{1}{2}}C, \quad \tilde{A} = A - \tilde{B}\tilde{C}$

- **Step 3:** Compute the left projection matrix $U: U = Q_o EV (V^T E^T Q_o EV)^{-1}$
- **Step 4: Construct the ROM:** $E_r = U^T EV, A_r = U^T AV, B_r = U^T B, C_r = CV$

information !!

Accuracy

The first q moments of H(s) are preserved, due to the (block) Krylov-subspace used for constructing V

$$V = \left\{ \left(s_0 E - A \right)^{-1} B, \left(s_0 E - A \right)^{-1} E \left(s_0 E - A \right)^{-1} B, \cdots, \left[\left(s_0 E - A \right)^{-1} E \right]^{q-1} \left(s_0 E - A \right)^{-1} B \right\} \right\}$$

This guarantees a similar accuracy with PRIMA (using U=V).

Provides system Furthermore, U provides extra accuracy! oberservability $U = Q_o EV \left(V^T E^T Q_o EV \right)^{-1} \implies \operatorname{range}(U) \subset \operatorname{range}(Q_o)$

Complexity

Compared with PRBT, our method is 2X faster.

Our method (one GARE):

 $\tilde{A}^{T}Q_{a}E + E^{T}Q_{a}\tilde{A} + E^{T}Q_{a}\tilde{B}\tilde{B}^{T}Q_{a}E + \tilde{C}\tilde{C} = 0$

PRBT (two GAREs): $\begin{cases} \tilde{A}^{T}Q_{o}E + E^{T}Q_{o}\tilde{A} + E^{T}Q_{o}\tilde{B}\tilde{B}^{T}Q_{o}E + \tilde{C}^{T}\tilde{C} = 0\\ \tilde{A}Q_{c}E^{T} + EQ_{c}\tilde{A}^{T} + EQ_{c}\tilde{C}^{T}\tilde{C}Q_{c}E^{T} + \tilde{B}\tilde{B}^{T} = 0 \end{cases}$

$$U = Q_{o}EV(V^{T}E^{T}Q_{o}EV)^{-1}, E_{r} = U^{T}EV, A_{r} = U^{T}AV, B_{r} = U^{T}B, C_{r} = CV$$

For the obtained ROM, we can prove that the following LMIs

$$\begin{cases} A_{r}^{T} X E_{r} + E_{r}^{T} X A_{r} = -L_{r} L_{r}^{T}, \\ E_{r}^{T} X B_{r} - C_{r}^{T} = -L_{r} W_{r}, \\ D + D^{T} \ge W^{T} W \end{cases}$$

Sufficient condition for passivity!!

has a positive semi-definite solution:

 $X = V^T E^T Q_o E V \ge 0$

According to the <u>extended positive real lemma</u> (*R. W. Freund* and *F. Jarre 2004*), the constructed ROM is <u>passive</u>.

Singular Descriptor systems

$$E \frac{dx}{dt} = A x + B u, \quad y = C x + D u$$

E is not invertible

Canonical Form of the Matrix Pencil

$$E = T_{l} \begin{bmatrix} I \\ N \end{bmatrix} T_{r}, \quad A = T_{l} \begin{bmatrix} J \\ I \end{bmatrix} T_{r}$$

 T_l and T_r are invertible, J corresponds to finite system poles, N is a nilpotent matrix that leads to infinite system poles.

Spectral Projectors

$$P_{l} = T_{l} \begin{bmatrix} I \\ 0 \end{bmatrix} T_{l}^{-1}, \quad P_{r} = T_{r}^{-1} \begin{bmatrix} I \\ 0 \end{bmatrix} T_{l}^{-1}$$

Note: in practice, we <u>do not</u> use the canonical form to compute the spectral projectors; instead, we use the <u>sparse-LU based canonical</u> <u>projector technique</u> to compute the two projector matrices.

Details: Z. Zhang and N. Wong, "An Efficient Projector-Based Passivity Test for Descriptor Systems", IEEE TCAD, Aug. 2010

Singular Descriptor systems

 $E \frac{dx}{dt} = Ax + Bu$, y = Cx + Du **E is not invertible**

The transfer function of a passive descriptor system:

$$H(s) = C(sE - A)^{-1}B + D = H_{sp}(s) + \underbrace{M_{0} + sM_{1}}_{P(s)}$$

Passivity Condition for Descriptor Systems: The proper part H_{sp}(s)+M₀ is positive real, and M₁ is positive semidefinite.

Requirements for our moment-matching flow:

- **1.** Preserve the possible polynomial part P(s)
- 2. Reduce Hsp(s), and ensure the passivity of $H_{sp}(s)+M_0$

Our Solution:

System Decomposition

Passive moment matching for indefinite systems

$$E \frac{dx}{dt} = Ax + Bu$$
, $y = Cx + Du$ **E is not invertible**

Step 1: System Decomposition by *Pr*

1. Define $G(s) = C(I - P_r)(sE - A)^{-1}B + D$, then $H_{sp}(s)+M_{\theta}$ can be realized by a <u>nonsingular indefinite system</u> $(E_p, A_p, B_p, C_p, D_p)$:

$$E_{p} = EP_{r} - \alpha A(I - P_{r}), A_{p} = A, C_{p} = CP_{r}, B_{p} = B, D_{p} = G(0), \text{ with } \alpha > 0$$

2. Extract *M*₁ $M_{1} = \frac{G(s_{1}) - G(s_{2})}{s_{1} - s_{2}}, \text{ with } s_{1}, s_{2} > 0$

Step 2: Reduce the <u>indefinite</u> nonsingular model $(E_p, A_p, B_p, C_p, D_p)$ by our proposed moment matching method, get the ROM

$$E_{pr}\frac{dx}{dt} = A_{pr}\tilde{x} + B_{pr}u, \quad y = C_{pr}\tilde{x} + D_{p}u$$

Step 3: Reconstruct the singular ROM:

$$Er = \begin{bmatrix} E_{pr} & & \\ & 0 & I_{m} \\ & & 0 \end{bmatrix}, A_{r} = \begin{bmatrix} A_{pr} & & \\ & I_{m} & \\ & & & I_{m} \end{bmatrix}, B_{r} = \begin{bmatrix} B_{pr} \\ 0 \\ M_{1} \end{bmatrix}, C_{r}^{T} = \begin{bmatrix} C_{pr}^{T} \\ -I_{m} \\ 0 \end{bmatrix}, D_{r} = D_{p}$$

Note: The final ROM is passive and the polynomial part P(s) is preserved.

Benchmark: an order-1505 RLC MNA model, 5 ports

Verification flow: Use sparse LU-based spectral projector Use single-point moment matching to construct V Reduce the proper part (Hsp(s)+M0) by the proposed passive moment matching

Use Matlab built-in function "gcare" to solve the GARE

Reconstruction to a singular ROM

Compare PRIMA (directly performed on the original MNA model)

Compare with

PRIMA and PRBT

MOR of the Indefinite Proper Part $H_{sp}(s)+M_{\theta}$

Low-freq. band: both moment matching methods are better than PRBT The proposed method is better than PRIMA in the whole frequency band

CPU Times	Model Size	Number of Port	PRIMA (sec)	PRBT (sec)	Proposed (sec)
	1505	5	1.76	507.8	243.1

MOR of the Indefinite Proper Part $H_{sp}(s)+M_{\theta}$

The passivity is tested by the generalized Hamiltonian method (GHM

Z. Zhang and N. Wong, "Passivity test of immitance descriptor systems based on generalized Hamiltonian methods", IEEE TCAS2, Jan.2010

MOR of whole MNA descriptor-system model

To preserve passivity, PRIMA is directly performed on the original positive semi-definite descriptor system

The proposed moment-matching method produces a ROM that overlaps the original model in the whole frequency band; but the conventional moment matching (e.g. PRIMA) can't preserve the polynomial part P(s).

Thanks for your attention!

Q&A

Z. Zhang and L. Daniel, Research Lab of Electronics, MIT Q. Wang and N. Wong, Dept. of EEE, Univ. of Hong Kong