Thermally Optimal Stop-Go Scheduling

of Task Graphs with Real-Time Constraints

Pratyush Kumar Lothar Thiele
Computer Engineering and Networks Laboratory

ETH Zirich, Switzerland

ASP-DAC 2011, Yokohama,
26th January, 20m

: = ¥
P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop Go Scheduling ASP-DAC 2011, Yokohama

Outline

° Motivation

Motivation The on-chip temperature problem

The heat is on!

@ Exponential rise in processor power densities

Power density

10000

rocket
nozzle

1000

nZl{Iear
r‘a(IM

1970 1980 1990 2000 2010

[Source: Intel]

@ Consequentially high on-chip temperatures

@ Hot chips can cause short-term functional errors and long-term reliability

degradation

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 3/34

Motivation Solutions to the temperature problem

What are the solutions?

@ Better VLSI design

Thermal-aware design, new materials ...

@ Hardware cooling solutions

Use better heat sinks, fans, air cooling (or even water cooling)

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 20m, Yokohama 4/34

What are the solutions?

@ Better VLSI design
Thermal-aware design, new materials ...
@ Hardware cooling solutions
Use better heat sinks, fans, air cooling (or even water cooling)
@ \oltage (and frequency) scaling (DVS)
When temperatures are too high, reduce supply voltage Vpp (and slow down the
processor)
@ Stop-go execution

When temperatures are too high, completely turn off the processor and peripherals

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 20m, Yokohama 4/34

Motivation Thermal optimization for real-time applications

Cool real-time

@ Performance degrades with DVS or stop-go execution

@ For real-time applications it is important to ensure that tasks do not miss deadlines
when such techniques are used

@ Clearly, this is a case for co-design: thermal and real-time objectives must be

considered simultaneously

@ This is the focus of this work

P.Kumar, L. Thiele (TIK, Z h Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 5/34

Motivation Existing work on thermal + real-time

Limitations in existing work

@ Existing work considers only sporadic tasks with individual deadlines.

e However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.

e Such applications only have a consolidated deadline, with greater scheduling freedom.

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama

6/34

Limitations in existing work

@ Existing work considers only sporadic tasks with individual deadlines.

e However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.

e Such applications only have a consolidated deadline, with greater scheduling freedom.

@ Existing work exclusively focuses on DVS

e DVSis becoming less important as the headroom for voltage scaling reduces
@ DVS cannot be applied to other I/0 components like radio, network bus, memory

controller, etc.

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama

6/34

Limitations in existing work

@ Existing work considers only sporadic tasks with individual deadlines.

e However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.

e Such applications only have a consolidated deadline, with greater scheduling freedom.

@ Existing work exclusively focuses on DVS
e DVSis becoming less important as the headroom for voltage scaling reduces
@ DVS cannot be applied to other I/0 components like radio, network bus, memory
controller, etc.

@ We address these two issues in this work

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama

6/34

Outline

@ system model and problem definition

System model and problem definition System Model
System Model

@ We have a system that can exist in two modes: active and idle
@ In active mode the system consumes some power and processes tasks at some rate

@ Inidle mode the system consumes a lower amount of power and processors no tasks

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama 8/34

System model and problem definition System Model
System Model

@ We have a system that can exist in two modes: active and idle
@ In active mode the system consumes some power and processes tasks at some rate
@ Inidle mode the system consumes a lower amount of power and processors no tasks

@ The system cannot be put in the idle mode while running a task (requires context

save and restore)

@ Only control: Put the system in idle mode in between task executions

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama 8/34

System model and problem definition Thermal Model
Thermal Model

@ Heat dissipation is modelled using the compact thermal model

@ From the compact model parameters, we can derive the following closed-loop

solution to the temperature of the system
T(t) = T% 4 (T(to) = T%) - e~ oltto)

where t, is the starting time, T® is the steady-state temperature and a is the

time-constant.

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama

9/34

System model and problem definition Thermal Model
Thermal Model

@ Heat dissipation is modelled using the compact thermal model

@ From the compact model parameters, we can derive the following closed-loop

solution to the temperature of the system
T(t) = T + (T(to) — T) - e-oltt)
where t, is the starting time, T® is the steady-state temperature and a is the

time-constant.

@ The power consumption is mode-dependent and thus the parameters T* and a are

also mode-dependent. We use super-scripts to denote the modes

@ The thermal properties of the system is given in the tuple T = {Tact, Ttdl gact qgidl}

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 9/34

System model and problem definition Application Model

Application Model

@ Application is modeled as a task graph G = (V, E)
@ Fachv € Vis atask with an execution time T,

@ Each edge e = (v, v,) denotes that the task v; must complete before the task v,
starts

@ Itisrequired that all tasks of the task graph complete execution with wqx units of

time

@ The application is characterized by A ={G, T, Wynax}

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 10/34

System model and problem definition Scheduling problem

Scheduling problem

@ Astop-go schedule of a task graph is characterized by the tuple S = {o, t'4'}
@ o is the static-ordering of tasks: o is the ith task to be executed

@ t'dljs the amount of idle times inserted: t}‘“ is the idle time inserted before the

execution of the jth task

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama /34

SHiEiIEREHE
Scheduling problem

@ Astop-go schedule of a task graph is characterized by the tuple S = {o, t'4'}
@ o is the static-ordering of tasks: o is the ith task to be executed

o ti4listhe amount of idle times inserted: t}‘“ is the idle time inserted before the

execution of the jth task

Problem Definition
Given is a system with thermal parameters T and an application A.
To find a stop-go schedule S that schedules the application to complete

within its makespan and optimally minimizes the peak temperature

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama

n/34

System model and problem definition Scheduling problem

Putting it all together

System model: Te¢t = 395K, Tt = 325K, a9t = 'l = 6.667 5~

Application model: Task graph with 5 tasks, T, = soms, w = g415ms.
Schedule: 0 = (CABDE), ' = (0, 0,43, 61, 61)ms

®

@G-

360
345 +
330 +

315 +

300 } } t t t t t t

O 50 100 150 200 250 300 350 400 450

(cfal [e] Jof e

P. Kumar, L. Thiele (TIK, ETH Zirich)

Thermally Optimal Stop-Go Scheduling

t (in ms)

ASP-DAC 20m, Yokohama

12/34

Outline

© Main results

Step 1: Given static-order of tasks

@ let the static-ordering o be given
@ We are to only compute optimal values of t*dt

@ Let Tj denote the temperature of the system at the finish of the jth task

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama

14734

Step 1: Given static-order of tasks

@ let the static-ordering o be given
@ We are to only compute optimal values of t*dt
@ Let Tj denote the temperature of the system at the finish of the jth task
@ We have the following result:
Theorem1
Suppose an arbitrary non-preemptive stop-go schedule with given

static-ordering of tasks, . Then, any change of the idle times such that

noneof Tj, j € {1,...,|V|} decreases, and at least one increases, decreases

the makespan.

» Additional slide: Proof sketch

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama 14/34

Main results

Interpretation of Theorem 1

360 +
345 +

330 4

300 1 1 1 1
(o] 100 200 300 400

t'd = (o0, 0,65,30,50)ms

w =395ms, TT¥ = 366K

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

Interpretation of Theorem 1

360

345

330

315

300

P. Kumar, L. Thiele (TIK, ETH Zirich)

(o] 100 200 300 400
t'd = (o0, 0,65,30,50)ms
w =395ms, T = 366K

360

345

330

315

300

Thermally Optimal Stop-Go Scheduling

[e] 100 200 300 400
tid = (0, 0,28,50,50)ms
w =378ms, TM¥ = 366K

ASP-DAC 2011, Yokohama

Interpretation of Theorem 1

360 + 360 +
345 + 345 +
330 ~ 330 +
315 + 315 +
300 f f f f 300 | | | ;
(0] 100 200 300 400 [e] 100 200 300 400
tid = (0,0, 65,30,50)ms t' = (0,0,28,50,50)ms
5,30,5
w =395ms, T = 366K w =378ms, TM3 = 366K

Insight

If the maximum temperature that we reach is T™**, we must not remain in idle longer

than is required to end up with T; = Tm™e*

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 15/34

JUst Sufficient Throttling (JUST) schedule

Informal definition
JUST(0) is a stop-go schedule where
-the first p°P* tasks are executed with no idle time before them,

- the remaining tasks are executed with an idle time before them such that T; = T°P,

-the makespan w = Wmax

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 16/34

Solution for given static-order of tasks
JUst Sufficient Throttling (JUST) schedule

Informal definition

JUST(0) is a stop-go schedule where

-the first p°P* tasks are executed with no idle time before them,

- the remaining tasks are executed with an idle time before them such that T; = T°P,

-the makespan w = Wmax

360 +

345 +

300 f f f f

[e] 100 200 300 400
tid = (0, 0,28,50,50)ms
w =1378ms, T3 = 366K

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 16/34

Main results

Computation of p°P* and TPt

Are p°Pt, T°Pt unique? How to compute them?

Yes, they are unique. Computation described in Algorithm 1in paper.

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.

Brief Idea

@ Let TFo™* be the temperature of the system when executing the first j tasks without

any idle time

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17/34

Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.
Brief Idea

@ Let TFo™* be the temperature of the system when executing the first j tasks without
any idle time

@ We must have T;O“t L Tort

opt

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17/34

Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.
Brief Idea
@ Let TFo™* be the temperature of the system when executing the first j tasks without

any idle time

@ We must have T;g{;& L Tort

cont opt
@ We must have Tpm,br1 > Tep

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17/34

Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.
Brief Idea
@ Let TFo™* be the temperature of the system when executing the first j tasks without

any idle time
@ We must have ng{;ﬁ L Tort
@ We must have T;"“t > Topt

optg

@ We must have have w = wax

@ Binary search over p°P*

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17/34

Optimality of JUST schedule

Theorem 2
JUST(0) optimally minimizes the peak temperature amongst all stop-go

schedules following a given static-order o and satisfying the makespan

constraint.

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama 18/34

Optimality of JUST schedule

Theorem 2
JUST(0) optimally minimizes the peak temperature amongst all stop-go
schedules following a given static-order o and satisfying the makespan

constraint.

Proof idea
Take any schedule S with static-order o.

Repeatedly apply Theorem 1to modify S to become more and more

similar to the JUST schedule.

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama 18/34

Step 2: Integrated choice of o and t*4!

@ Let 0°P! be the optimal static-order with a corresponding JUST(o°P*) schedule with
p°Ptand Tert
@ Observe that

@ Changing the order of execution of the first p°P* tasks does not change the makespan or
peak temperature

@ Changing the order of execution of the last (| V| — p©Pt) tasks does not change the
makespan or peak temperature

@ To characterize 0°Pt, it is sufficient to specify tasks is one among the first p°P* or not

@ Hence, because of the special property of a JUST schedule, we have only a binary

decision problem!

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 19/34

Algorithm to compute g°P*
Brief Idea

@ We start by assuming a target value of the peak temperature Tt, i.e. TPt < Tt

@ For a given T*, we can compute o°P* by solving a binary integer program (BIP) with
binary variable x, denoting whether task v belongs to the first p°?* tasks or not

@ Precedence constraints, makespan constraints and peak temperature being below
the target temperature can be modelled in the BIP

o If a feasible solution exists, we reduce T* and again solve another instance of BIP

» Additional slide: BIP formulation

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 20/34

Main results

Periodically repeating applications

@ We have considered a single run of a task graph

@ Butin practice applications run periodically, with period equal to maximum

makespan (Wmax)

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

Periodically repeating applications

@ We have considered a single run of a task graph

@ Butin practice applications run periodically, with period equal to maximum

makespan (Wmax)

@ What is different? The finishing temperature of the nth iteration is the finish

temperature of the (n + 1)th iteration
@ We make a simple extension: In each iteration, compute the optimal JUST schedule

@ Let (T°PY),, denote the maximum temperature in the nth iteration

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 21/34

Periodically repeating applications

@ We have considered a single run of a task graph

@ Butin practice applications run periodically, with period equal to maximum

makespan (Wmax)

@ What is different? The finishing temperature of the nth iteration is the finish

temperature of the (n + 1)th iteration
@ We make a simple extension: In each iteration, compute the optimal JUST schedule
@ Let (T°PY),, denote the maximum temperature in the nth iteration

@ Questions: What is the maximum temperature of the system if run iteratively? Does

JUST schedule optimally reduce it?

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 21/34

Results for periodic applications

Theorem 3

The series {(T°P*),,} converges for n — oo and the limit does not depend

on the static-ordering of tasks for JUST schedules.

Corollary 4
With JUST schedules the highest temperature of a system running a

periodic task graph is minimal and independent of the ordering of tasks.

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 22/34

Inferences from results

o If we want to run a task graph periodically, using JUST schedule in each period,
optimally minimizes the peak temperature
@ Further, the choice of o is irrelevant to minimize the peak temperature

@ Thus, we can choose o w.r.t. other considerations, such as buffer capacity, and use

the JUST schedule for this o to optimally minimize peak temperature

ASP-DAC 2011, Yokohama

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

23/34

Outline

0 Experimental verification

System Properties

ARM-like core
Tact — 394K, Tidl — 325
a%t = qtdl = 6.667s"

T, = 330K

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

Experimental verification MP3 application example

Realistic example - MP3 application

Execution
Task ID Time
(x1077s)
HM 236070
RQO 139325
RQ1 139325

ROO 69385
RO1 69385
STR 73618
ARO 13088
ARI1 13088

MO 711744
M1 711744
FIO 157184
FI1 157184
SYO 1866138
SY1 1866138

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 201, Yokohama 26/34

Experimental verification MP3 application example

MP3 application - comparison with other schedules

Temperature (in K)

02 04 06 08 02 04 06 08 02 04 06 08
Time (in s) Time (in s) Time (in s)
(@) (b) (©

Figure: Temperature trace for (a) JUST schedule, (b) workload conserving execution, and (c) equally
distributed idletimes

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 27/34

Synthetic example

r, L. Thiele (TIK, ETH Zirich)

—©—0
OnOnC)

Task ID | Execution Time
(in msec)

30
140

N R W~
W
(=]

Thermally Optimal Stop-Go Scheduling

Experimental verification

Synthetic example - Results

(]
3
o

w
Py
o

350

Temperature (in K)

340

330

0.1 02 03 04 05
Time (in s)

Figure: T = 375K, 0 = (1,3,5,2,4,6,7)
{TorPt} = (374K, 377K, 378K,378.3K, ...)

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

Experimental verification Synthetic example

Synthetic example - Results

380
< 370
E
2 360
©
g
£ 350
2
340
330
0t1 0t2 Ot3 0‘.4 O‘.5 0:1 0:2 0‘.3 0:4 0:5
Time (in s) Time (in's)
Figure: Tt = 375K, 0 = (1,3,5,2,4,6,7) Figure: T* = 370K, 0 = (2,1,3,5,4,6,7)
{TorPt} = (374K, 377K, 378K,378.3K, ...) {Tort} = (369K,377K,378K,3783K,...)

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 20m, Yokohama 29/34

Outline

© conclusions

Conclusions

Conclusions and future work

@ Stop-go execution is an effective way to manage on-chip temperature while

executing real-time applications
@ We proved optimality of the proposed JUST schedule for a given static-ordering
@ We gave an algorithm to optimize the static-ordering as well

@ For periodically repeating tasks, peak temperature is optimally minimized by JUST

schedule and is independent of the static-ordering

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama

31/34

Conclusions

Conclusions and future work

@ Stop-go execution is an effective way to manage on-chip temperature while
executing real-time applications

@ We proved optimality of the proposed JUST schedule for a given static-ordering

@ We gave an algorithm to optimize the static-ordering as well

@ For periodically repeating tasks, peak temperature is optimally minimized by JUST
schedule and is independent of the static-ordering

@ Future work:

e Extension to multi-processor distributed systems

e Combination of DVS and stop-go scheduling

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 31/34

Thank you for your attention

Any questions?

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

Sketch of proof of theorem 1

@ DefineFas

VI

_qidlgidl
F:l |exp aty
j=1

@ We can reduce the above to

[VI=1

T,—T
F=c-(Tv-T) I1 ﬁ
j=1

From which we can derive

0Ty,

oF
@ Also, we can show that 30 < 0. Hence the theorem

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

ASP-DAC 2011, Yokohama

33/34

Additional slides

Binary Integer Program for a given target temperature

Maximise 1
subject to x, € {01} VveV
X1 < Xy V(vi,v2)€eE
Al'x > b1
A2Tx < b2
T —T/

where A1, =

fact (gaer) (e _any 1= 1@ = T, Az = T(v)
)

b2 = gtot (pactyr (02T
Tact _ TO

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling

