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Motivation The on-chip temperature problem

The heat is on!

@ Exponential rise in processor power densities
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@ Consequentially high on-chip temperatures

@ Hot chips can cause short-term functional errors and long-term reliability

degradation
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Motivation Solutions to the temperature problem

What are the solutions?

@ Better VLSI design

Thermal-aware design, new materials ...

@ Hardware cooling solutions

Use better heat sinks, fans, air cooling (or even water cooling)
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What are the solutions?

@ Better VLSI design
Thermal-aware design, new materials ...
@ Hardware cooling solutions
Use better heat sinks, fans, air cooling (or even water cooling)
@ \oltage (and frequency) scaling (DVS)
When temperatures are too high, reduce supply voltage Vpp (and slow down the
processor)
@ Stop-go execution

When temperatures are too high, completely turn off the processor and peripherals
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Motivation Thermal optimization for real-time applications

Cool real-time

@ Performance degrades with DVS or stop-go execution

@ For real-time applications it is important to ensure that tasks do not miss deadlines
when such techniques are used

@ Clearly, this is a case for co-design: thermal and real-time objectives must be

considered simultaneously

@ This is the focus of this work
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Motivation Existing work on thermal + real-time

Limitations in existing work

@ Existing work considers only sporadic tasks with individual deadlines.

e However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.

e Such applications only have a consolidated deadline, with greater scheduling freedom.
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Limitations in existing work

@ Existing work considers only sporadic tasks with individual deadlines.

e However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.

e Such applications only have a consolidated deadline, with greater scheduling freedom.

@ Existing work exclusively focuses on DVS

e DVSis becoming less important as the headroom for voltage scaling reduces
@ DVS cannot be applied to other I/0 components like radio, network bus, memory

controller, etc.
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Limitations in existing work

@ Existing work considers only sporadic tasks with individual deadlines.

e However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.

e Such applications only have a consolidated deadline, with greater scheduling freedom.

@ Existing work exclusively focuses on DVS
e DVSis becoming less important as the headroom for voltage scaling reduces
@ DVS cannot be applied to other I/0 components like radio, network bus, memory
controller, etc.

@ We address these two issues in this work
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System model and problem definition System Model
System Model

@ We have a system that can exist in two modes: active and idle
@ In active mode the system consumes some power and processes tasks at some rate

@ Inidle mode the system consumes a lower amount of power and processors no tasks
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System model and problem definition System Model
System Model

@ We have a system that can exist in two modes: active and idle
@ In active mode the system consumes some power and processes tasks at some rate
@ Inidle mode the system consumes a lower amount of power and processors no tasks

@ The system cannot be put in the idle mode while running a task (requires context

save and restore)

@ Only control: Put the system in idle mode in between task executions
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System model and problem definition Thermal Model
Thermal Model

@ Heat dissipation is modelled using the compact thermal model

@ From the compact model parameters, we can derive the following closed-loop

solution to the temperature of the system
T(t) = T% 4 (T(to) = T%) - e~ oltto)

where t, is the starting time, T® is the steady-state temperature and a is the

time-constant.
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System model and problem definition Thermal Model
Thermal Model

@ Heat dissipation is modelled using the compact thermal model

@ From the compact model parameters, we can derive the following closed-loop

solution to the temperature of the system
T(t) = T + (T(to) — T) - e-oltt)
where t, is the starting time, T® is the steady-state temperature and a is the

time-constant.

@ The power consumption is mode-dependent and thus the parameters T* and a are

also mode-dependent. We use super-scripts to denote the modes

@ The thermal properties of the system is given in the tuple T = {Tact, Ttdl gact qgidl}

P.Kumar, L. Thiele (TIK, ETH Ziirich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 9/34



System model and problem definition Application Model

Application Model

@ Application is modeled as a task graph G = (V, E)
@ Fachv € Vis atask with an execution time T,

@ Each edge e = (v, v,) denotes that the task v; must complete before the task v,
starts

@ Itisrequired that all tasks of the task graph complete execution with wqx units of

time

@ The application is characterized by A ={G, T, Wynax}
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System model and problem definition Scheduling problem

Scheduling problem

@ Astop-go schedule of a task graph is characterized by the tuple S = {o, t'4'}
@ o is the static-ordering of tasks: o is the ith task to be executed

@ t'dljs the amount of idle times inserted: t}‘“ is the idle time inserted before the

execution of the jth task
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Scheduling problem

@ Astop-go schedule of a task graph is characterized by the tuple S = {o, t'4'}
@ o is the static-ordering of tasks: o is the ith task to be executed

o ti4listhe amount of idle times inserted: t}‘“ is the idle time inserted before the

execution of the jth task

Problem Definition
Given is a system with thermal parameters T and an application A.
To find a stop-go schedule S that schedules the application to complete

within its makespan and optimally minimizes the peak temperature
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System model and problem definition Scheduling problem

Putting it all together

System model: Te¢t = 395K, Tt = 325K, a9t = 'l = 6.667 5~

Application model: Task graph with 5 tasks, T, = soms, w = g415ms.
Schedule: 0 = (CABDE), ' = (0, 0,43, 61, 61)ms
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Step 1: Given static-order of tasks

@ let the static-ordering o be given
@ We are to only compute optimal values of t*dt

@ Let Tj denote the temperature of the system at the finish of the jth task
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Step 1: Given static-order of tasks

@ let the static-ordering o be given
@ We are to only compute optimal values of t*dt
@ Let Tj denote the temperature of the system at the finish of the jth task
@ We have the following result:
Theorem1
Suppose an arbitrary non-preemptive stop-go schedule with given

static-ordering of tasks, . Then, any change of the idle times such that

noneof Tj, j € {1,...,|V|} decreases, and at least one increases, decreases

the makespan.

» Additional slide: Proof sketch
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Main results

Interpretation of Theorem 1
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w =395ms, TT¥ = 366K
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Interpretation of Theorem 1
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Interpretation of Theorem 1

360 + 360 +
345 + 345 +
330 ~ 330 +
315 + 315 +
300 f f f f 300 | | | ;
(0] 100 200 300 400 [e] 100 200 300 400
tid = (0,0, 65,30,50)ms t' = (0,0,28,50,50)ms
5,30,5
w =395ms, T = 366K w =378ms, TM3 = 366K

Insight

If the maximum temperature that we reach is T™**, we must not remain in idle longer

than is required to end up with T; = Tm™e*
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JUst Sufficient Throttling (JUST) schedule

Informal definition
JUST(0) is a stop-go schedule where
-the first p°P* tasks are executed with no idle time before them,

- the remaining tasks are executed with an idle time before them such that T; = T°P,

-the makespan w = Wmax
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Solution for given static-order of tasks
JUst Sufficient Throttling (JUST) schedule

Informal definition

JUST(0) is a stop-go schedule where

-the first p°P* tasks are executed with no idle time before them,

- the remaining tasks are executed with an idle time before them such that T; = T°P,

-the makespan w = Wmax

360 +

345 +

300 f f f f

[e] 100 200 300 400
tid = (0, 0,28,50,50)ms
w =1378ms, T3 = 366K
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Main results

Computation of p°P* and TPt

Are p°Pt, T°Pt unique? How to compute them?

Yes, they are unique. Computation described in Algorithm 1in paper.
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Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.

Brief Idea

@ Let TFo™* be the temperature of the system when executing the first j tasks without

any idle time
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Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.
Brief Idea

@ Let TFo™* be the temperature of the system when executing the first j tasks without
any idle time

@ We must have T;O“t L Tort

opt
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Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.
Brief Idea
@ Let TFo™* be the temperature of the system when executing the first j tasks without

any idle time

@ We must have T;g{;& L Tort

cont opt
@ We must have Tpm,br1 > Tep
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Computation of p°Pt and TPt

Are p°Pt, T°Pt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1in paper.
Brief Idea
@ Let TFo™* be the temperature of the system when executing the first j tasks without

any idle time
@ We must have ng{;ﬁ L Tort
@ We must have T;"“t > Topt

optg

@ We must have have w = wax

@ Binary search over p°P*
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Optimality of JUST schedule

Theorem 2
JUST(0) optimally minimizes the peak temperature amongst all stop-go

schedules following a given static-order o and satisfying the makespan

constraint.
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Optimality of JUST schedule

Theorem 2
JUST(0) optimally minimizes the peak temperature amongst all stop-go
schedules following a given static-order o and satisfying the makespan

constraint.

Proof idea
Take any schedule S with static-order o.

Repeatedly apply Theorem 1to modify S to become more and more

similar to the JUST schedule.
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Step 2: Integrated choice of o and t*4!

@ Let 0°P! be the optimal static-order with a corresponding JUST(o°P*) schedule with
p°Ptand Tert
@ Observe that

@ Changing the order of execution of the first p°P* tasks does not change the makespan or
peak temperature

@ Changing the order of execution of the last (| V| — p©Pt) tasks does not change the
makespan or peak temperature

@ To characterize 0°Pt, it is sufficient to specify tasks is one among the first p°P* or not

@ Hence, because of the special property of a JUST schedule, we have only a binary

decision problem!
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Algorithm to compute g°P*
Brief Idea

@ We start by assuming a target value of the peak temperature Tt, i.e. TPt < Tt

@ For a given T*, we can compute o°P* by solving a binary integer program (BIP) with
binary variable x, denoting whether task v belongs to the first p°?* tasks or not

@ Precedence constraints, makespan constraints and peak temperature being below
the target temperature can be modelled in the BIP

o If a feasible solution exists, we reduce T* and again solve another instance of BIP

» Additional slide: BIP formulation
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Main results

Periodically repeating applications

@ We have considered a single run of a task graph

@ Butin practice applications run periodically, with period equal to maximum

makespan (Wmax)
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Periodically repeating applications

@ We have considered a single run of a task graph

@ Butin practice applications run periodically, with period equal to maximum

makespan (Wmax)

@ What is different? The finishing temperature of the nth iteration is the finish

temperature of the (n + 1)th iteration
@ We make a simple extension: In each iteration, compute the optimal JUST schedule

@ Let (T°PY),, denote the maximum temperature in the nth iteration
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Periodically repeating applications

@ We have considered a single run of a task graph

@ Butin practice applications run periodically, with period equal to maximum

makespan (Wmax)

@ What is different? The finishing temperature of the nth iteration is the finish

temperature of the (n + 1)th iteration
@ We make a simple extension: In each iteration, compute the optimal JUST schedule
@ Let (T°PY),, denote the maximum temperature in the nth iteration

@ Questions: What is the maximum temperature of the system if run iteratively? Does

JUST schedule optimally reduce it?
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Results for periodic applications

Theorem 3

The series {(T°P*),,} converges for n — oo and the limit does not depend

on the static-ordering of tasks for JUST schedules.

Corollary 4
With JUST schedules the highest temperature of a system running a

periodic task graph is minimal and independent of the ordering of tasks.
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Inferences from results

o If we want to run a task graph periodically, using JUST schedule in each period,
optimally minimizes the peak temperature
@ Further, the choice of o is irrelevant to minimize the peak temperature

@ Thus, we can choose o w.r.t. other considerations, such as buffer capacity, and use

the JUST schedule for this o to optimally minimize peak temperature

ASP-DAC 2011, Yokohama
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System Properties

ARM-like core
Tact — 394K, Tidl — 325
a%t = qtdl = 6.667s"

T, = 330K
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Experimental verification MP3 application example

Realistic example - MP3 application

Execution
Task ID Time
(x1077s)
HM 236070
RQO 139325
RQ1 139325

ROO 69385
RO1 69385
STR 73618
ARO 13088
ARI1 13088

MO 711744
M1 711744
FIO 157184
FI1 157184
SYO 1866138
SY1 1866138
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Experimental verification MP3 application example

MP3 application - comparison with other schedules

Temperature (in K)

02 04 06 08 02 04 06 08 02 04 06 08
Time (in s) Time (in s) Time (in s)
(@) (b) (©

Figure: Temperature trace for (a) JUST schedule, (b) workload conserving execution, and (c) equally
distributed idletimes
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Synthetic example
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Experimental verification

Synthetic example - Results

(]
3
o

w
Py
o

350

Temperature (in K)

340

330

0.1 02 03 04 05
Time (in s)

Figure: T = 375K, 0 = (1,3,5,2,4,6,7)
{TorPt} = (374K, 377K, 378K,378.3K, ...)
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Experimental verification Synthetic example

Synthetic example - Results

380
< 370
E
2 360
©
g
£ 350
2
340
330
0t1 0t2 Ot3 0‘.4 O‘.5 0:1 0:2 0‘.3 0:4 0:5
Time (in s) Time (in's)
Figure: Tt = 375K, 0 = (1,3,5,2,4,6,7) Figure: T* = 370K, 0 = (2,1,3,5,4,6,7)
{TorPt} = (374K, 377K, 378K,378.3K, ...) {Tort} = (369K,377K,378K,3783K,...)
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Conclusions

Conclusions and future work

@ Stop-go execution is an effective way to manage on-chip temperature while

executing real-time applications
@ We proved optimality of the proposed JUST schedule for a given static-ordering
@ We gave an algorithm to optimize the static-ordering as well

@ For periodically repeating tasks, peak temperature is optimally minimized by JUST

schedule and is independent of the static-ordering
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Conclusions

Conclusions and future work

@ Stop-go execution is an effective way to manage on-chip temperature while
executing real-time applications

@ We proved optimality of the proposed JUST schedule for a given static-ordering

@ We gave an algorithm to optimize the static-ordering as well

@ For periodically repeating tasks, peak temperature is optimally minimized by JUST
schedule and is independent of the static-ordering

@ Future work:

e Extension to multi-processor distributed systems

e Combination of DVS and stop-go scheduling
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Thank you for your attention

Any questions?
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Sketch of proof of theorem 1

@ DefineFas

VI

_qidlgidl
F:l |exp aty
j=1

@ We can reduce the above to

[VI=1

T,—T
F=c-(Tv-T) I1 ﬁ
j=1

From which we can derive

0Ty,

oF
@ Also, we can show that 30 < 0. Hence the theorem
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Additional slides

Binary Integer Program for a given target temperature

Maximise 1
subject to x, € {01} VveV
X1 < Xy V(vi,v2)€eE
Al'x > b1
A2Tx < b2
T —T/

where A1, =

fact (gaer) (e _any 1= 1@ = T, Az = T(v)
)

b2 = gtot  (pactyr (02T
Tact _ TO
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