
Thermally Optimal Stop-Go Scheduling
of Task Graphs with Real-Time Constraints

Pratyush Kumar Lothar Thiele

Computer Engineering and Networks Laboratory
ETH Zürich, Switzerland

ASP-DAC 2011, Yokohama,
26th January, 2011

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 1 / 34

Outline

1 Motivation

2 System model and problem definition

3 Main results

4 Experimental verification

5 Conclusions

Motivation The on-chip temperature problem

The heat is on!

Exponential rise in processor power densities

[Source: Intel]

Consequentially high on-chip temperatures

Hot chips can cause short-term functional errors and long-term reliability
degradation

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 3 / 34

Motivation Solutions to the temperature problem

What are the solutions?

1 Better VLSI design
Thermal-aware design, new materials ...

2 Hardware cooling solutions
Use better heat sinks, fans, air cooling (or even water cooling)

3 Voltage (and frequency) scaling (DVS)
When temperatures are too high, reduce supply voltage VDD (and slow down the
processor)

4 Stop-go execution
When temperatures are too high, completely turn off the processor and peripherals

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 4 / 34

Motivation Solutions to the temperature problem

What are the solutions?

1 Better VLSI design
Thermal-aware design, new materials ...

2 Hardware cooling solutions
Use better heat sinks, fans, air cooling (or even water cooling)

3 Voltage (and frequency) scaling (DVS)
When temperatures are too high, reduce supply voltage VDD (and slow down the
processor)

4 Stop-go execution
When temperatures are too high, completely turn off the processor and peripherals

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 4 / 34

Motivation Thermal optimization for real-time applications

Cool real-time

Performance degrades with DVS or stop-go execution

For real-time applications it is important to ensure that tasks do not miss deadlines
when such techniques are used

Clearly, this is a case for co-design: thermal and real-time objectives must be
considered simultaneously

This is the focus of this work

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 5 / 34

Motivation Existing work on thermal + real-time

Limitations in existing work

Existing work considers only sporadic tasks with individual deadlines.

However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.
Such applications only have a consolidated deadline, with greater scheduling freedom.

Existing work exclusively focuses on DVS
DVS is becoming less important as the headroom for voltage scaling reduces
DVS cannot be applied to other I/O components like radio, network bus, memory
controller, etc.

We address these two issues in this work

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 6 / 34

Motivation Existing work on thermal + real-time

Limitations in existing work

Existing work considers only sporadic tasks with individual deadlines.

However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.
Such applications only have a consolidated deadline, with greater scheduling freedom.

Existing work exclusively focuses on DVS
DVS is becoming less important as the headroom for voltage scaling reduces
DVS cannot be applied to other I/O components like radio, network bus, memory
controller, etc.

We address these two issues in this work

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 6 / 34

Motivation Existing work on thermal + real-time

Limitations in existing work

Existing work considers only sporadic tasks with individual deadlines.

However real-life applications are usually expressed as task graphs: a set of tasks
constrained by precedence constraints.
Such applications only have a consolidated deadline, with greater scheduling freedom.

Existing work exclusively focuses on DVS
DVS is becoming less important as the headroom for voltage scaling reduces
DVS cannot be applied to other I/O components like radio, network bus, memory
controller, etc.

We address these two issues in this work

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 6 / 34

Outline

1 Motivation

2 System model and problem definition

3 Main results

4 Experimental verification

5 Conclusions

System model and problem definition System Model

System Model

We have a system that can exist in two modes: active and idle

In active mode the system consumes some power and processes tasks at some rate

In idle mode the system consumes a lower amount of power and processors no tasks

The system cannot be put in the idle mode while running a task (requires context
save and restore)

Only control: Put the system in idle mode in between task executions

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 8 / 34

System model and problem definition System Model

System Model

We have a system that can exist in two modes: active and idle

In active mode the system consumes some power and processes tasks at some rate

In idle mode the system consumes a lower amount of power and processors no tasks

The system cannot be put in the idle mode while running a task (requires context
save and restore)

Only control: Put the system in idle mode in between task executions

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 8 / 34

System model and problem definition Thermal Model

Thermal Model

Heat dissipation is modelled using the compact thermal model

From the compact model parameters, we can derive the following closed-loop
solution to the temperature of the system

T(t) = T∞ + (T(t0) − T
∞) · e−a(t−t0)

where t0 is the starting time, T∞ is the steady-state temperature and a is the
time-constant.

The power consumption is mode-dependent and thus the parameters T∞ and a are
also mode-dependent. We use super-scripts to denote the modes

The thermal properties of the system is given in the tuple T = {Tact, T idl,aact,aidl}

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 9 / 34

System model and problem definition Thermal Model

Thermal Model

Heat dissipation is modelled using the compact thermal model

From the compact model parameters, we can derive the following closed-loop
solution to the temperature of the system

T(t) = T∞ + (T(t0) − T
∞) · e−a(t−t0)

where t0 is the starting time, T∞ is the steady-state temperature and a is the
time-constant.

The power consumption is mode-dependent and thus the parameters T∞ and a are
also mode-dependent. We use super-scripts to denote the modes

The thermal properties of the system is given in the tuple T = {Tact, T idl,aact,aidl}

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 9 / 34

System model and problem definition Application Model

Application Model

Application is modeled as a task graphG = (V ,E)

Each v ∈ V is a task with an execution time τv

Each edge e = (v1, v2) denotes that the task v1 must complete before the task v2

starts

It is required that all tasks of the task graph complete execution withωmax units of
time

The application is characterized by A = {G, τ,ωmax}

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 10 / 34

System model and problem definition Scheduling problem

Scheduling problem

A stop-go schedule of a task graph is characterized by the tuple S = {σ, tidl}

σ is the static-ordering of tasks: σi is the ith task to be executed

tidl is the amount of idle times inserted: tidlj is the idle time inserted before the
execution of the jth task

Problem Definition
Given is a system with thermal parameters T and an application A.
To find a stop-go schedule S that schedules the application to complete
within its makespan and optimally minimizes the peak temperature

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 11 / 34

System model and problem definition Scheduling problem

Scheduling problem

A stop-go schedule of a task graph is characterized by the tuple S = {σ, tidl}

σ is the static-ordering of tasks: σi is the ith task to be executed

tidl is the amount of idle times inserted: tidlj is the idle time inserted before the
execution of the jth task

Problem Definition
Given is a system with thermal parameters T and an application A.
To find a stop-go schedule S that schedules the application to complete
within its makespan and optimally minimizes the peak temperature

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 11 / 34

System model and problem definition Scheduling problem

Putting it all together

System model: Tact = 395K, T idl = 325K, aact = aidl = 6.667 s−1

Application model: Task graph with 5 tasks, τ∗ = 50ms,ω = 415ms.
Schedule: σ = (CABDE), tidl = (0, 0, 43, 61, 61)ms

T (in K)

t (in ms)
0 50 100 150 200 250 300 350 400 450

300

315

330

345

360

C A B D E

A C

B

D

E

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 12 / 34

Outline

1 Motivation

2 System model and problem definition

3 Main results

4 Experimental verification

5 Conclusions

Main results Solution for given static-order of tasks

Step 1 : Given static-order of tasks

Let the static-ordering σ be given

We are to only compute optimal values of tidl

Let Tj denote the temperature of the system at the finish of the jth task

We have the following result:

Theorem 1
Suppose an arbitrary non-preemptive stop-go schedule with given
static-ordering of tasks, σ. Then, any change of the idle times such that
none of Tj, j ∈ {1, . . . , |V |} decreases, and at least one increases, decreases
the makespan.

Additional slide: Proof sketch

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 14 / 34

Main results Solution for given static-order of tasks

Step 1 : Given static-order of tasks

Let the static-ordering σ be given

We are to only compute optimal values of tidl

Let Tj denote the temperature of the system at the finish of the jth task

We have the following result:

Theorem 1
Suppose an arbitrary non-preemptive stop-go schedule with given
static-ordering of tasks, σ. Then, any change of the idle times such that
none of Tj, j ∈ {1, . . . , |V |} decreases, and at least one increases, decreases
the makespan.

Additional slide: Proof sketch

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 14 / 34

Main results Solution for given static-order of tasks

Interpretation of Theorem 1

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 65, 30, 50)ms

ω = 395ms , Tmax = 366K

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 28, 50, 50)ms

ω = 378ms , Tmax = 366K

Insight
If the maximum temperature that we reach is Tmax, we must not remain in idle longer
than is required to end up with Tj = Tmax

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 15 / 34

Main results Solution for given static-order of tasks

Interpretation of Theorem 1

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 65, 30, 50)ms

ω = 395ms , Tmax = 366K

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 28, 50, 50)ms

ω = 378ms , Tmax = 366K

Insight
If the maximum temperature that we reach is Tmax, we must not remain in idle longer
than is required to end up with Tj = Tmax

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 15 / 34

Main results Solution for given static-order of tasks

Interpretation of Theorem 1

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 65, 30, 50)ms

ω = 395ms , Tmax = 366K

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 28, 50, 50)ms

ω = 378ms , Tmax = 366K

Insight
If the maximum temperature that we reach is Tmax, we must not remain in idle longer
than is required to end up with Tj = Tmax

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 15 / 34

Main results Solution for given static-order of tasks

JUst Sufficient Throttling (JUST) schedule

Informal definition
JUST(σ) is a stop-go schedule where
- the first popt tasks are executed with no idle time before them,
- the remaining tasks are executed with an idle time before them such that Tj = Topt,
- the makespanω = ωmax

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 28, 50, 50)ms

ω = 378ms , Tmax = 366K

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 16 / 34

Main results Solution for given static-order of tasks

JUst Sufficient Throttling (JUST) schedule

Informal definition
JUST(σ) is a stop-go schedule where
- the first popt tasks are executed with no idle time before them,
- the remaining tasks are executed with an idle time before them such that Tj = Topt,
- the makespanω = ωmax

0 100 200 300 400

300

315

330

345

360

t idl = (0, 0, 28, 50, 50)ms

ω = 378ms , Tmax = 366K

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 16 / 34

Main results Solution for given static-order of tasks

Computation of popt and Topt

Are popt, Topt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1 in paper.

Brief Idea

Let Tcontj be the temperature of the system when executing the first j tasks without
any idle time

We must have Tcont
popt

6 Topt

We must have Tcont
popt+1 > T

opt

We must have haveω = ωmax

Binary search over popt

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17 / 34

Main results Solution for given static-order of tasks

Computation of popt and Topt

Are popt, Topt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1 in paper.
Brief Idea

Let Tcontj be the temperature of the system when executing the first j tasks without
any idle time

We must have Tcont
popt

6 Topt

We must have Tcont
popt+1 > T

opt

We must have haveω = ωmax

Binary search over popt

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17 / 34

Main results Solution for given static-order of tasks

Computation of popt and Topt

Are popt, Topt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1 in paper.
Brief Idea

Let Tcontj be the temperature of the system when executing the first j tasks without
any idle time

We must have Tcont
popt

6 Topt

We must have Tcont
popt+1 > T

opt

We must have haveω = ωmax

Binary search over popt

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17 / 34

Main results Solution for given static-order of tasks

Computation of popt and Topt

Are popt, Topt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1 in paper.
Brief Idea

Let Tcontj be the temperature of the system when executing the first j tasks without
any idle time

We must have Tcont
popt

6 Topt

We must have Tcont
popt+1 > T

opt

We must have haveω = ωmax

Binary search over popt

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17 / 34

Main results Solution for given static-order of tasks

Computation of popt and Topt

Are popt, Topt unique? How to compute them?
Yes, they are unique. Computation described in Algorithm 1 in paper.
Brief Idea

Let Tcontj be the temperature of the system when executing the first j tasks without
any idle time

We must have Tcont
popt

6 Topt

We must have Tcont
popt+1 > T

opt

We must have haveω = ωmax

Binary search over popt

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 17 / 34

Main results Optimality of JUST schedule

Optimality of JUST schedule

Theorem 2
JUST(σ) optimally minimizes the peak temperature amongst all stop-go
schedules following a given static-order σ and satisfying the makespan
constraint.

Proof idea
Take any schedule Swith static-order σ.
Repeatedly apply Theorem 1 to modify S to become more and more
similar to the JUST schedule.

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 18 / 34

Main results Optimality of JUST schedule

Optimality of JUST schedule

Theorem 2
JUST(σ) optimally minimizes the peak temperature amongst all stop-go
schedules following a given static-order σ and satisfying the makespan
constraint.

Proof idea
Take any schedule Swith static-order σ.
Repeatedly apply Theorem 1 to modify S to become more and more
similar to the JUST schedule.

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 18 / 34

Main results Integrated computation ofσ and tidl

Step 2: Integrated choice of σ and tidl

Skip this section

Let σopt be the optimal static-order with a corresponding JUST(σopt) schedule with
popt and Topt

Observe that
1 Changing the order of execution of the firstpopt tasks does not change the makespan or

peak temperature
2 Changing the order of execution of the last (|V |− popt) tasks does not change the

makespan or peak temperature

To characterize σopt, it is sufficient to specify tasks is one among the first popt or not

Hence, because of the special property of a JUST schedule, we have only a binary
decision problem!

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 19 / 34

Main results Integrated computation ofσ and tidl

Algorithm to compute σopt

Brief Idea

We start by assuming a target value of the peak temperature T t, i.e. Topt 6 T t

For a given T t, we can compute σopt by solving a binary integer program (BIP) with
binary variable xv denoting whether task v belongs to the first popt tasks or not

Precedence constraints, makespan constraints and peak temperature being below
the target temperature can be modelled in the BIP

If a feasible solution exists, we reduce T t and again solve another instance of BIP

Additional slide: BIP formulation

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 20 / 34

Main results Scheduling periodic applications

Periodically repeating applications

We have considered a single run of a task graph

But in practice applications run periodically, with period equal to maximum
makespan (ωmax)

What is different? The finishing temperature of the nth iteration is the finish
temperature of the (n+ 1)th iteration

We make a simple extension: In each iteration, compute the optimal JUST schedule

Let (Topt)n denote the maximum temperature in the nth iteration

Questions: What is the maximum temperature of the system if run iteratively? Does
JUST schedule optimally reduce it?

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 21 / 34

Main results Scheduling periodic applications

Periodically repeating applications

We have considered a single run of a task graph

But in practice applications run periodically, with period equal to maximum
makespan (ωmax)

What is different? The finishing temperature of the nth iteration is the finish
temperature of the (n+ 1)th iteration

We make a simple extension: In each iteration, compute the optimal JUST schedule

Let (Topt)n denote the maximum temperature in the nth iteration

Questions: What is the maximum temperature of the system if run iteratively? Does
JUST schedule optimally reduce it?

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 21 / 34

Main results Scheduling periodic applications

Periodically repeating applications

We have considered a single run of a task graph

But in practice applications run periodically, with period equal to maximum
makespan (ωmax)

What is different? The finishing temperature of the nth iteration is the finish
temperature of the (n+ 1)th iteration

We make a simple extension: In each iteration, compute the optimal JUST schedule

Let (Topt)n denote the maximum temperature in the nth iteration

Questions: What is the maximum temperature of the system if run iteratively? Does
JUST schedule optimally reduce it?

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 21 / 34

Main results Scheduling periodic applications

Results for periodic applications

Theorem 3
The series {(Topt)n} converges for n→∞ and the limit does not depend
on the static-ordering of tasks for JUST schedules.

Corollary 4
With JUST schedules the highest temperature of a system running a
periodic task graph is minimal and independent of the ordering of tasks.

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 22 / 34

Main results Scheduling periodic applications

Inferences from results

If we want to run a task graph periodically, using JUST schedule in each period,
optimally minimizes the peak temperature

Further, the choice of σ is irrelevant to minimize the peak temperature

Thus, we can choose σw.r.t. other considerations, such as buffer capacity, and use
the JUST schedule for this σ to optimally minimize peak temperature

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 23 / 34

Outline

1 Motivation

2 System model and problem definition

3 Main results

4 Experimental verification

5 Conclusions

Experimental verification

System Properties

ARM-like core
Tact = 394K, T idl = 325
aact = aidl = 6.667s−1

T0 = 330K

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 25 / 34

Experimental verification MP3 application example

Realistic example - MP3 application

HM

RQ0 RQ1

RO0 RO1

STR

AR0 AR1

IM0 IM1

FI0 FI1

SY0 SY1

Execution
Task ID Time

(×10−7s)
HM 236070
RQ0 139325
RQ1 139325
RO0 69385
RO1 69385
STR 73618
AR0 13088
AR1 13088
IM0 711744
IM1 711744
FI0 157184
FI1 157184
SY0 1866138
SY1 1866138

Fig. 3. Task graph representation of a MP3 decoder application and execution
times of the tasks on an ARM7TDMI processor

(a) (b) (c)

Fig. 4. Temperature variation with time for the MP3 decoder application for a
given static-ordering of tasks with scheduling using (a) JUST policy, (b)
work-conserving scheduler, and (c) equally distributed idle times.

This experimentally demonstrates Corollary 4. Moreover, it
shows that the constant value of peak temperature, (T opt)∞, is
reached within a small number of periods.

C. Comparison with naive techniques for a practical applica-
tion

Consider an MP3 decoder application shown in Fig. 3. The
execution times of the tasks on an ARM7TDMI processor are
obtained from [9]. Let the maximum allowed makespan ω =
1.5 × τtot = 0.874s.

Let σ be given by the ordering of the tasks in the table in
Fig. 3. For this static-ordering of tasks, we compare JUST(σ)
with two other naive policies: (a) work conserving schedul-
ing, where idle times before all tasks are 0, (b) equal idle
times scheduling, where idle time before each task is equal and
makespan equals the bound. The temperature variation with
time for each of the naive policies is shown in Fig. 4. Clearly
the optimal JUST policy outperforms the others.

VI. CONCLUSIONS

Dynamic Thermal Management (DTM) techniques are in-
creasingly becoming necessary in today’s electronic systems
to reduce on-chip temperatures. One such technique, dynamic
voltage scaling (DVS) has been widely studied to manage
on-chip temperatures while meeting performance constraints.
However, with ever increasing leakage current, it is essential
to reduce leakage power using alternate DTM techniques like
stop-go scheduling. In this paper, we proposed the use of stop-
go scheduling to schedule applications modeled as task-graphs,
while satisfying a given makespan constraint minimizing the
peak temperature of the system.

Given a static-ordering of the tasks, we proposed the JUst
Sufficient Throttling (JUST) schedule, which we proved to be
the stop-go schedule with the smallest peak temperature. When
the static-ordering is unknown, we proposed a BIP-based ap-
proximate formulation to find one. We proved that for peri-
odic task-graphs, where the period equals the maximum al-
lowed makespan, the minimum peak temperature is obtained
under a JUST policy. Interestingly, the peak temperature is in-
dependent of the chosen static-ordering of tasks, and is thus,
free to be chosen based on other constraints. We experimen-
tally validated the presented theoretical results on two sample
applications executing on an ARM processor.

ACKNOWLEDGMENTS

This work was supported by the PRO3D project financed by the
European Community FP7 programme (ref. FP7-ICT-248776).

REFERENCES

[1] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage
energy and temperature. In FOCS, 2004.

[2] L. Benini, A. Bogliolo, and G. D. Micheli. Dynamic power management
of electronic systems. In ICCAD, 1998.

[3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In
DAC, 2003.

[4] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In HPCA, 2001.

[5] T. Chantem, X. S. Hu, and R. P. Dick. Online work maximization under
a peak temperature constraint. In ISLPED, 2009.

[6] J. Donald and M. Martonosi. Techniques for multicore thermal manage-
ment: Classification and new exploration. In ISCA, 2006.

[7] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In DATE,
2007.

[8] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan. Temperature-aware microarchitecture: Modeling and im-
plementation. TACO, 1(1), 2004.

[9] S. Stuijk, M. Geilen, and T. Basten. Sdf3: Sdf for free.
http://www.es.ele.tue.nl/sdf3/.

[10] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Re-
ducing power in high-performance microprocessors. In DAC, 1998.

[11] S. Wang and R. Bettati. Reactive speed control in temperature-
constrained real-time systems. Real-Time Systems, 39(1-3), 2008.

[12] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo. Energy-efficient real-
time task scheduling with temperature-dependent leakage. In DATE,
2010.

[13] S. Zhang and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. In ICCAD, 2007.

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 26 / 34

Experimental verification MP3 application example

MP3 application - comparison with other schedules

HM

RQ0 RQ1

RO0 RO1

STR

AR0 AR1

IM0 IM1

FI0 FI1

SY0 SY1

Execution
Task ID Time

(×10−7s)
HM 236070
RQ0 139325
RQ1 139325
RO0 69385
RO1 69385
STR 73618
AR0 13088
AR1 13088
IM0 711744
IM1 711744
FI0 157184
FI1 157184
SY0 1866138
SY1 1866138

Fig. 3. Task graph representation of a MP3 decoder application and execution
times of the tasks on an ARM7TDMI processor

(a) (b) (c)

Fig. 4. Temperature variation with time for the MP3 decoder application for a
given static-ordering of tasks with scheduling using (a) JUST policy, (b)
work-conserving scheduler, and (c) equally distributed idle times.

This experimentally demonstrates Corollary 4. Moreover, it
shows that the constant value of peak temperature, (T opt)∞, is
reached within a small number of periods.

C. Comparison with naive techniques for a practical applica-
tion

Consider an MP3 decoder application shown in Fig. 3. The
execution times of the tasks on an ARM7TDMI processor are
obtained from [9]. Let the maximum allowed makespan ω =
1.5 × τtot = 0.874s.

Let σ be given by the ordering of the tasks in the table in
Fig. 3. For this static-ordering of tasks, we compare JUST(σ)
with two other naive policies: (a) work conserving schedul-
ing, where idle times before all tasks are 0, (b) equal idle
times scheduling, where idle time before each task is equal and
makespan equals the bound. The temperature variation with
time for each of the naive policies is shown in Fig. 4. Clearly
the optimal JUST policy outperforms the others.

VI. CONCLUSIONS

Dynamic Thermal Management (DTM) techniques are in-
creasingly becoming necessary in today’s electronic systems
to reduce on-chip temperatures. One such technique, dynamic
voltage scaling (DVS) has been widely studied to manage
on-chip temperatures while meeting performance constraints.
However, with ever increasing leakage current, it is essential
to reduce leakage power using alternate DTM techniques like
stop-go scheduling. In this paper, we proposed the use of stop-
go scheduling to schedule applications modeled as task-graphs,
while satisfying a given makespan constraint minimizing the
peak temperature of the system.

Given a static-ordering of the tasks, we proposed the JUst
Sufficient Throttling (JUST) schedule, which we proved to be
the stop-go schedule with the smallest peak temperature. When
the static-ordering is unknown, we proposed a BIP-based ap-
proximate formulation to find one. We proved that for peri-
odic task-graphs, where the period equals the maximum al-
lowed makespan, the minimum peak temperature is obtained
under a JUST policy. Interestingly, the peak temperature is in-
dependent of the chosen static-ordering of tasks, and is thus,
free to be chosen based on other constraints. We experimen-
tally validated the presented theoretical results on two sample
applications executing on an ARM processor.

ACKNOWLEDGMENTS

This work was supported by the PRO3D project financed by the
European Community FP7 programme (ref. FP7-ICT-248776).

REFERENCES

[1] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage
energy and temperature. In FOCS, 2004.

[2] L. Benini, A. Bogliolo, and G. D. Micheli. Dynamic power management
of electronic systems. In ICCAD, 1998.

[3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In
DAC, 2003.

[4] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In HPCA, 2001.

[5] T. Chantem, X. S. Hu, and R. P. Dick. Online work maximization under
a peak temperature constraint. In ISLPED, 2009.

[6] J. Donald and M. Martonosi. Techniques for multicore thermal manage-
ment: Classification and new exploration. In ISCA, 2006.

[7] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In DATE,
2007.

[8] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan. Temperature-aware microarchitecture: Modeling and im-
plementation. TACO, 1(1), 2004.

[9] S. Stuijk, M. Geilen, and T. Basten. Sdf3: Sdf for free.
http://www.es.ele.tue.nl/sdf3/.

[10] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Re-
ducing power in high-performance microprocessors. In DAC, 1998.

[11] S. Wang and R. Bettati. Reactive speed control in temperature-
constrained real-time systems. Real-Time Systems, 39(1-3), 2008.

[12] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo. Energy-efficient real-
time task scheduling with temperature-dependent leakage. In DATE,
2010.

[13] S. Zhang and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. In ICCAD, 2007.

Figure: Temperature trace for (a) JUST schedule, (b) workload conserving execution, and (c) equally
distributed idletimes

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 27 / 34

Experimental verification Synthetic example

Synthetic example

denote the starting temperature of the system in the nth pe-
riod. For each period we can use the JUST schedule corre-
sponding to that initial temperature for some given or com-
puted static ordering. For such a schedule, let (T opt)n denote
the highest temperature of the system for the nth period. Let
limn→∞(T opt)n = (T opt)∞, if the limit exists.

Theorem 3 (T opt)∞ exists and it does not depend on the cho-
sen static-ordering of tasks σ.

Proof First we show that, (T0)n+1 > (T0)n implies that
(T opt)n+1 > (T opt)n. We show this by contradiction.
Let (T opt)n+1 ≤ (T opt)n. Then, from (19) it follows
that (popt)n+1 ≤ (popt)n. Then, with the above assump-
tions L.H.S. of (20) decreases, while it should be a constant.
Hence, we have a contradiction. Similarly, one can show that
(T0)n+1 < (T0)n implies that (T opt)n+1 < (T opt)n.
Since, according to the JUST policy, the makespan equals ω,
we have (T0)n+1 = (T opt)n. Thus, (T opt)n is a mono-
tonic function of n. A fixed point is reached when (T 0)n∗ =
(T opt)n∗. Such a fixed point can be computed by substituting
popt = 0 in (20). The corresponding equation defines (T opt)∞

�

v∈V

(T opt)∞ − T �
j

((T opt)∞ − T idl)
= f idl(ω − τtot) × fact(τtot) (25)

As is clear from the equation above and given the fact that it is
obtained for popt = 0, the value of (T opt)∞ is independent of
the static-ordering of tasks σ.

The above theorem implies that, if we use JUST policy in
each period, the value of (T opt)n would monotonically ei-
ther decrease or increase to the defined (T opt)∞. Indeed, if
(T opt)∞ ≤ T0, the highest temperature over all time would be
T0 and if (T opt)∞ > T0, the highest temperature over all time
would be (T opt)∞. We have the following interesting result.

Corollary 4 Under a JUST policy the highest temperature of
a system running a periodic task graph is minimal and inde-
pendent of the ordering of tasks.

Thus, for a periodic task graph, as long as a JUST policy is
used, the choice of the static-ordering of tasks is insignificant
with respect to the peak temperature. The static ordering may
be designed with consideration to other factors like required
buffer capacity.

V. EXPERIMENTAL RESULTS

A. Thermal data

We source our thermal data from [12] for an ARM like
processor. Typical numbers for such a processor are C =
0.03J/K and G = 0.3W/K. Typical parameters of the power
consumption in both modes are αact = αidl = 0.1W/K,
βact = −11W,βidl = −25W . The ambient temperature, T 0

is assumed to be at room temperature of 300K. In all experi-
ments, we assume that the initial temperature of the system is
T0 = 330K.

5 6

3 4

1 2

7

Task ID Execution Time
(in msec)

1 30
2 140
3 20
4 50
5 50
6 50
7 50

Fig. 1. Task graph and execution times of tasks of an example application

(a) T t = 375 K (b) T t = 370 K

Fig. 2. Temperature variation with time for JUST schedules obtained with
different values of T t. Asterisks denote completion of tasks.

B. Integrated Choice of Static-Ordering and Idle Times for
Synthetic Application

Consider the task graph shown in Fig. 1 with given execu-
tion time of tasks. The value of the makespan, ω = 1.5τtot =
0.585s. We demonstrate finding the optimal schedule for this
application. For a target temperature of T t = 375K, we at-
tempt to find the defined sets V1 and V2. The corresponding x
vector obtained from the BIP is [0 1 0 1 0 1 1]T , where these
values are ordered based on the node numberings. The only
ordering of tasks for this x and satisfying the precedence con-
straints is σ = (1, 3, 5, 2, 4, 6, 7). The temperature variation
with time for JUST(σ) is shown in Fig. 2. Note the two said
phases of the JUST policy: in the first phase popt = 3 tasks are
executed with no idle times, and in the next phase, 4 tasks have
temperatures at the end of their execution Tj = T opt = 374K,
which is indeed smaller than T t = 375K.

We now perform a binary search on T t based on the in-
feasibility of the BIP. For T t = 370K, the BIP is feasible and
the solution is x = [1 0 1 1 1 1 1]T . One of the different order-
ings satisfying this x is σ = (2, 1, 3, 5, 4, 6, 7). The tempera-
ture variation with time for JUST(σ) is shown in Fig. 2. Indeed,
the peak temperature is less than 370K. Reducing T t to 365K,
we obtain an infeasible BIP formulation. Hence, we terminate
the process. Note that, in all above BIP formulations, the error
due to the approximation of (23) is less than 1K.

We execute the task graph periodically with a period of ω =
0.585s, for either choice of σ discussed above. For the two
cases, the series of values of (T opt)n are (374 K, 377 K, 378
K, 378.3 K, . . .) and (369 K, 377 K, 378 K, 378.3 K, . . .).

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 28 / 34

Experimental verification Synthetic example

Synthetic example - Results

denote the starting temperature of the system in the nth pe-
riod. For each period we can use the JUST schedule corre-
sponding to that initial temperature for some given or com-
puted static ordering. For such a schedule, let (T opt)n denote
the highest temperature of the system for the nth period. Let
limn→∞(T opt)n = (T opt)∞, if the limit exists.

Theorem 3 (T opt)∞ exists and it does not depend on the cho-
sen static-ordering of tasks σ.

Proof First we show that, (T0)n+1 > (T0)n implies that
(T opt)n+1 > (T opt)n. We show this by contradiction.
Let (T opt)n+1 ≤ (T opt)n. Then, from (19) it follows
that (popt)n+1 ≤ (popt)n. Then, with the above assump-
tions L.H.S. of (20) decreases, while it should be a constant.
Hence, we have a contradiction. Similarly, one can show that
(T0)n+1 < (T0)n implies that (T opt)n+1 < (T opt)n.
Since, according to the JUST policy, the makespan equals ω,
we have (T0)n+1 = (T opt)n. Thus, (T opt)n is a mono-
tonic function of n. A fixed point is reached when (T 0)n∗ =
(T opt)n∗. Such a fixed point can be computed by substituting
popt = 0 in (20). The corresponding equation defines (T opt)∞

�

v∈V

(T opt)∞ − T �
j

((T opt)∞ − T idl)
= f idl(ω − τtot) × fact(τtot) (25)

As is clear from the equation above and given the fact that it is
obtained for popt = 0, the value of (T opt)∞ is independent of
the static-ordering of tasks σ.

The above theorem implies that, if we use JUST policy in
each period, the value of (T opt)n would monotonically ei-
ther decrease or increase to the defined (T opt)∞. Indeed, if
(T opt)∞ ≤ T0, the highest temperature over all time would be
T0 and if (T opt)∞ > T0, the highest temperature over all time
would be (T opt)∞. We have the following interesting result.

Corollary 4 Under a JUST policy the highest temperature of
a system running a periodic task graph is minimal and inde-
pendent of the ordering of tasks.

Thus, for a periodic task graph, as long as a JUST policy is
used, the choice of the static-ordering of tasks is insignificant
with respect to the peak temperature. The static ordering may
be designed with consideration to other factors like required
buffer capacity.

V. EXPERIMENTAL RESULTS

A. Thermal data

We source our thermal data from [12] for an ARM like
processor. Typical numbers for such a processor are C =
0.03J/K and G = 0.3W/K. Typical parameters of the power
consumption in both modes are αact = αidl = 0.1W/K,
βact = −11W,βidl = −25W . The ambient temperature, T 0

is assumed to be at room temperature of 300K. In all experi-
ments, we assume that the initial temperature of the system is
T0 = 330K.

5 6

3 4

1 2

7

Task ID Execution Time
(in msec)

1 30
2 140
3 20
4 50
5 50
6 50
7 50

Fig. 1. Task graph and execution times of tasks of an example application

(a) T t = 375 K (b) T t = 370 K

Fig. 2. Temperature variation with time for JUST schedules obtained with
different values of T t. Asterisks denote completion of tasks.

B. Integrated Choice of Static-Ordering and Idle Times for
Synthetic Application

Consider the task graph shown in Fig. 1 with given execu-
tion time of tasks. The value of the makespan, ω = 1.5τtot =
0.585s. We demonstrate finding the optimal schedule for this
application. For a target temperature of T t = 375K, we at-
tempt to find the defined sets V1 and V2. The corresponding x
vector obtained from the BIP is [0 1 0 1 0 1 1]T , where these
values are ordered based on the node numberings. The only
ordering of tasks for this x and satisfying the precedence con-
straints is σ = (1, 3, 5, 2, 4, 6, 7). The temperature variation
with time for JUST(σ) is shown in Fig. 2. Note the two said
phases of the JUST policy: in the first phase popt = 3 tasks are
executed with no idle times, and in the next phase, 4 tasks have
temperatures at the end of their execution Tj = T opt = 374K,
which is indeed smaller than T t = 375K.

We now perform a binary search on T t based on the in-
feasibility of the BIP. For T t = 370K, the BIP is feasible and
the solution is x = [1 0 1 1 1 1 1]T . One of the different order-
ings satisfying this x is σ = (2, 1, 3, 5, 4, 6, 7). The tempera-
ture variation with time for JUST(σ) is shown in Fig. 2. Indeed,
the peak temperature is less than 370K. Reducing T t to 365K,
we obtain an infeasible BIP formulation. Hence, we terminate
the process. Note that, in all above BIP formulations, the error
due to the approximation of (23) is less than 1K.

We execute the task graph periodically with a period of ω =
0.585s, for either choice of σ discussed above. For the two
cases, the series of values of (T opt)n are (374 K, 377 K, 378
K, 378.3 K, . . .) and (369 K, 377 K, 378 K, 378.3 K, . . .).

Figure: T t = 375K,σ = (1, 3, 5, 2, 4, 6, 7)
{Topt} = (374K, 377K, 378K, 378.3K, . . .)

denote the starting temperature of the system in the nth pe-
riod. For each period we can use the JUST schedule corre-
sponding to that initial temperature for some given or com-
puted static ordering. For such a schedule, let (T opt)n denote
the highest temperature of the system for the nth period. Let
limn→∞(T opt)n = (T opt)∞, if the limit exists.

Theorem 3 (T opt)∞ exists and it does not depend on the cho-
sen static-ordering of tasks σ.

Proof First we show that, (T0)n+1 > (T0)n implies that
(T opt)n+1 > (T opt)n. We show this by contradiction.
Let (T opt)n+1 ≤ (T opt)n. Then, from (19) it follows
that (popt)n+1 ≤ (popt)n. Then, with the above assump-
tions L.H.S. of (20) decreases, while it should be a constant.
Hence, we have a contradiction. Similarly, one can show that
(T0)n+1 < (T0)n implies that (T opt)n+1 < (T opt)n.
Since, according to the JUST policy, the makespan equals ω,
we have (T0)n+1 = (T opt)n. Thus, (T opt)n is a mono-
tonic function of n. A fixed point is reached when (T 0)n∗ =
(T opt)n∗. Such a fixed point can be computed by substituting
popt = 0 in (20). The corresponding equation defines (T opt)∞

�

v∈V

(T opt)∞ − T �
j

((T opt)∞ − T idl)
= f idl(ω − τtot) × fact(τtot) (25)

As is clear from the equation above and given the fact that it is
obtained for popt = 0, the value of (T opt)∞ is independent of
the static-ordering of tasks σ.

The above theorem implies that, if we use JUST policy in
each period, the value of (T opt)n would monotonically ei-
ther decrease or increase to the defined (T opt)∞. Indeed, if
(T opt)∞ ≤ T0, the highest temperature over all time would be
T0 and if (T opt)∞ > T0, the highest temperature over all time
would be (T opt)∞. We have the following interesting result.

Corollary 4 Under a JUST policy the highest temperature of
a system running a periodic task graph is minimal and inde-
pendent of the ordering of tasks.

Thus, for a periodic task graph, as long as a JUST policy is
used, the choice of the static-ordering of tasks is insignificant
with respect to the peak temperature. The static ordering may
be designed with consideration to other factors like required
buffer capacity.

V. EXPERIMENTAL RESULTS

A. Thermal data

We source our thermal data from [12] for an ARM like
processor. Typical numbers for such a processor are C =
0.03J/K and G = 0.3W/K. Typical parameters of the power
consumption in both modes are αact = αidl = 0.1W/K,
βact = −11W,βidl = −25W . The ambient temperature, T 0

is assumed to be at room temperature of 300K. In all experi-
ments, we assume that the initial temperature of the system is
T0 = 330K.

5 6

3 4

1 2

7

Task ID Execution Time
(in msec)

1 30
2 140
3 20
4 50
5 50
6 50
7 50

Fig. 1. Task graph and execution times of tasks of an example application

(a) T t = 375 K (b) T t = 370 K

Fig. 2. Temperature variation with time for JUST schedules obtained with
different values of T t. Asterisks denote completion of tasks.

B. Integrated Choice of Static-Ordering and Idle Times for
Synthetic Application

Consider the task graph shown in Fig. 1 with given execu-
tion time of tasks. The value of the makespan, ω = 1.5τtot =
0.585s. We demonstrate finding the optimal schedule for this
application. For a target temperature of T t = 375K, we at-
tempt to find the defined sets V1 and V2. The corresponding x
vector obtained from the BIP is [0 1 0 1 0 1 1]T , where these
values are ordered based on the node numberings. The only
ordering of tasks for this x and satisfying the precedence con-
straints is σ = (1, 3, 5, 2, 4, 6, 7). The temperature variation
with time for JUST(σ) is shown in Fig. 2. Note the two said
phases of the JUST policy: in the first phase popt = 3 tasks are
executed with no idle times, and in the next phase, 4 tasks have
temperatures at the end of their execution Tj = T opt = 374K,
which is indeed smaller than T t = 375K.

We now perform a binary search on T t based on the in-
feasibility of the BIP. For T t = 370K, the BIP is feasible and
the solution is x = [1 0 1 1 1 1 1]T . One of the different order-
ings satisfying this x is σ = (2, 1, 3, 5, 4, 6, 7). The tempera-
ture variation with time for JUST(σ) is shown in Fig. 2. Indeed,
the peak temperature is less than 370K. Reducing T t to 365K,
we obtain an infeasible BIP formulation. Hence, we terminate
the process. Note that, in all above BIP formulations, the error
due to the approximation of (23) is less than 1K.

We execute the task graph periodically with a period of ω =
0.585s, for either choice of σ discussed above. For the two
cases, the series of values of (T opt)n are (374 K, 377 K, 378
K, 378.3 K, . . .) and (369 K, 377 K, 378 K, 378.3 K, . . .).

Figure: T t = 370K,σ = (2, 1, 3, 5, 4, 6, 7)
{Topt} = (369K, 377K, 378K, 378.3K, . . .)

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 29 / 34

Experimental verification Synthetic example

Synthetic example - Results

denote the starting temperature of the system in the nth pe-
riod. For each period we can use the JUST schedule corre-
sponding to that initial temperature for some given or com-
puted static ordering. For such a schedule, let (T opt)n denote
the highest temperature of the system for the nth period. Let
limn→∞(T opt)n = (T opt)∞, if the limit exists.

Theorem 3 (T opt)∞ exists and it does not depend on the cho-
sen static-ordering of tasks σ.

Proof First we show that, (T0)n+1 > (T0)n implies that
(T opt)n+1 > (T opt)n. We show this by contradiction.
Let (T opt)n+1 ≤ (T opt)n. Then, from (19) it follows
that (popt)n+1 ≤ (popt)n. Then, with the above assump-
tions L.H.S. of (20) decreases, while it should be a constant.
Hence, we have a contradiction. Similarly, one can show that
(T0)n+1 < (T0)n implies that (T opt)n+1 < (T opt)n.
Since, according to the JUST policy, the makespan equals ω,
we have (T0)n+1 = (T opt)n. Thus, (T opt)n is a mono-
tonic function of n. A fixed point is reached when (T 0)n∗ =
(T opt)n∗. Such a fixed point can be computed by substituting
popt = 0 in (20). The corresponding equation defines (T opt)∞

�

v∈V

(T opt)∞ − T �
j

((T opt)∞ − T idl)
= f idl(ω − τtot) × fact(τtot) (25)

As is clear from the equation above and given the fact that it is
obtained for popt = 0, the value of (T opt)∞ is independent of
the static-ordering of tasks σ.

The above theorem implies that, if we use JUST policy in
each period, the value of (T opt)n would monotonically ei-
ther decrease or increase to the defined (T opt)∞. Indeed, if
(T opt)∞ ≤ T0, the highest temperature over all time would be
T0 and if (T opt)∞ > T0, the highest temperature over all time
would be (T opt)∞. We have the following interesting result.

Corollary 4 Under a JUST policy the highest temperature of
a system running a periodic task graph is minimal and inde-
pendent of the ordering of tasks.

Thus, for a periodic task graph, as long as a JUST policy is
used, the choice of the static-ordering of tasks is insignificant
with respect to the peak temperature. The static ordering may
be designed with consideration to other factors like required
buffer capacity.

V. EXPERIMENTAL RESULTS

A. Thermal data

We source our thermal data from [12] for an ARM like
processor. Typical numbers for such a processor are C =
0.03J/K and G = 0.3W/K. Typical parameters of the power
consumption in both modes are αact = αidl = 0.1W/K,
βact = −11W,βidl = −25W . The ambient temperature, T 0

is assumed to be at room temperature of 300K. In all experi-
ments, we assume that the initial temperature of the system is
T0 = 330K.

5 6

3 4

1 2

7

Task ID Execution Time
(in msec)

1 30
2 140
3 20
4 50
5 50
6 50
7 50

Fig. 1. Task graph and execution times of tasks of an example application

(a) T t = 375 K (b) T t = 370 K

Fig. 2. Temperature variation with time for JUST schedules obtained with
different values of T t. Asterisks denote completion of tasks.

B. Integrated Choice of Static-Ordering and Idle Times for
Synthetic Application

Consider the task graph shown in Fig. 1 with given execu-
tion time of tasks. The value of the makespan, ω = 1.5τtot =
0.585s. We demonstrate finding the optimal schedule for this
application. For a target temperature of T t = 375K, we at-
tempt to find the defined sets V1 and V2. The corresponding x
vector obtained from the BIP is [0 1 0 1 0 1 1]T , where these
values are ordered based on the node numberings. The only
ordering of tasks for this x and satisfying the precedence con-
straints is σ = (1, 3, 5, 2, 4, 6, 7). The temperature variation
with time for JUST(σ) is shown in Fig. 2. Note the two said
phases of the JUST policy: in the first phase popt = 3 tasks are
executed with no idle times, and in the next phase, 4 tasks have
temperatures at the end of their execution Tj = T opt = 374K,
which is indeed smaller than T t = 375K.

We now perform a binary search on T t based on the in-
feasibility of the BIP. For T t = 370K, the BIP is feasible and
the solution is x = [1 0 1 1 1 1 1]T . One of the different order-
ings satisfying this x is σ = (2, 1, 3, 5, 4, 6, 7). The tempera-
ture variation with time for JUST(σ) is shown in Fig. 2. Indeed,
the peak temperature is less than 370K. Reducing T t to 365K,
we obtain an infeasible BIP formulation. Hence, we terminate
the process. Note that, in all above BIP formulations, the error
due to the approximation of (23) is less than 1K.

We execute the task graph periodically with a period of ω =
0.585s, for either choice of σ discussed above. For the two
cases, the series of values of (T opt)n are (374 K, 377 K, 378
K, 378.3 K, . . .) and (369 K, 377 K, 378 K, 378.3 K, . . .).

Figure: T t = 375K,σ = (1, 3, 5, 2, 4, 6, 7)
{Topt} = (374K, 377K, 378K, 378.3K, . . .)

denote the starting temperature of the system in the nth pe-
riod. For each period we can use the JUST schedule corre-
sponding to that initial temperature for some given or com-
puted static ordering. For such a schedule, let (T opt)n denote
the highest temperature of the system for the nth period. Let
limn→∞(T opt)n = (T opt)∞, if the limit exists.

Theorem 3 (T opt)∞ exists and it does not depend on the cho-
sen static-ordering of tasks σ.

Proof First we show that, (T0)n+1 > (T0)n implies that
(T opt)n+1 > (T opt)n. We show this by contradiction.
Let (T opt)n+1 ≤ (T opt)n. Then, from (19) it follows
that (popt)n+1 ≤ (popt)n. Then, with the above assump-
tions L.H.S. of (20) decreases, while it should be a constant.
Hence, we have a contradiction. Similarly, one can show that
(T0)n+1 < (T0)n implies that (T opt)n+1 < (T opt)n.
Since, according to the JUST policy, the makespan equals ω,
we have (T0)n+1 = (T opt)n. Thus, (T opt)n is a mono-
tonic function of n. A fixed point is reached when (T 0)n∗ =
(T opt)n∗. Such a fixed point can be computed by substituting
popt = 0 in (20). The corresponding equation defines (T opt)∞

�

v∈V

(T opt)∞ − T �
j

((T opt)∞ − T idl)
= f idl(ω − τtot) × fact(τtot) (25)

As is clear from the equation above and given the fact that it is
obtained for popt = 0, the value of (T opt)∞ is independent of
the static-ordering of tasks σ.

The above theorem implies that, if we use JUST policy in
each period, the value of (T opt)n would monotonically ei-
ther decrease or increase to the defined (T opt)∞. Indeed, if
(T opt)∞ ≤ T0, the highest temperature over all time would be
T0 and if (T opt)∞ > T0, the highest temperature over all time
would be (T opt)∞. We have the following interesting result.

Corollary 4 Under a JUST policy the highest temperature of
a system running a periodic task graph is minimal and inde-
pendent of the ordering of tasks.

Thus, for a periodic task graph, as long as a JUST policy is
used, the choice of the static-ordering of tasks is insignificant
with respect to the peak temperature. The static ordering may
be designed with consideration to other factors like required
buffer capacity.

V. EXPERIMENTAL RESULTS

A. Thermal data

We source our thermal data from [12] for an ARM like
processor. Typical numbers for such a processor are C =
0.03J/K and G = 0.3W/K. Typical parameters of the power
consumption in both modes are αact = αidl = 0.1W/K,
βact = −11W,βidl = −25W . The ambient temperature, T 0

is assumed to be at room temperature of 300K. In all experi-
ments, we assume that the initial temperature of the system is
T0 = 330K.

5 6

3 4

1 2

7

Task ID Execution Time
(in msec)

1 30
2 140
3 20
4 50
5 50
6 50
7 50

Fig. 1. Task graph and execution times of tasks of an example application

(a) T t = 375 K (b) T t = 370 K

Fig. 2. Temperature variation with time for JUST schedules obtained with
different values of T t. Asterisks denote completion of tasks.

B. Integrated Choice of Static-Ordering and Idle Times for
Synthetic Application

Consider the task graph shown in Fig. 1 with given execu-
tion time of tasks. The value of the makespan, ω = 1.5τtot =
0.585s. We demonstrate finding the optimal schedule for this
application. For a target temperature of T t = 375K, we at-
tempt to find the defined sets V1 and V2. The corresponding x
vector obtained from the BIP is [0 1 0 1 0 1 1]T , where these
values are ordered based on the node numberings. The only
ordering of tasks for this x and satisfying the precedence con-
straints is σ = (1, 3, 5, 2, 4, 6, 7). The temperature variation
with time for JUST(σ) is shown in Fig. 2. Note the two said
phases of the JUST policy: in the first phase popt = 3 tasks are
executed with no idle times, and in the next phase, 4 tasks have
temperatures at the end of their execution Tj = T opt = 374K,
which is indeed smaller than T t = 375K.

We now perform a binary search on T t based on the in-
feasibility of the BIP. For T t = 370K, the BIP is feasible and
the solution is x = [1 0 1 1 1 1 1]T . One of the different order-
ings satisfying this x is σ = (2, 1, 3, 5, 4, 6, 7). The tempera-
ture variation with time for JUST(σ) is shown in Fig. 2. Indeed,
the peak temperature is less than 370K. Reducing T t to 365K,
we obtain an infeasible BIP formulation. Hence, we terminate
the process. Note that, in all above BIP formulations, the error
due to the approximation of (23) is less than 1K.

We execute the task graph periodically with a period of ω =
0.585s, for either choice of σ discussed above. For the two
cases, the series of values of (T opt)n are (374 K, 377 K, 378
K, 378.3 K, . . .) and (369 K, 377 K, 378 K, 378.3 K, . . .).

Figure: T t = 370K,σ = (2, 1, 3, 5, 4, 6, 7)
{Topt} = (369K, 377K, 378K, 378.3K, . . .)

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 29 / 34

Outline

1 Motivation

2 System model and problem definition

3 Main results

4 Experimental verification

5 Conclusions

Conclusions

Conclusions and future work

Stop-go execution is an effective way to manage on-chip temperature while
executing real-time applications

We proved optimality of the proposed JUST schedule for a given static-ordering

We gave an algorithm to optimize the static-ordering as well

For periodically repeating tasks, peak temperature is optimally minimized by JUST
schedule and is independent of the static-ordering

Future work:
Extension to multi-processor distributed systems
Combination of DVS and stop-go scheduling

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 31 / 34

Conclusions

Conclusions and future work

Stop-go execution is an effective way to manage on-chip temperature while
executing real-time applications

We proved optimality of the proposed JUST schedule for a given static-ordering

We gave an algorithm to optimize the static-ordering as well

For periodically repeating tasks, peak temperature is optimally minimized by JUST
schedule and is independent of the static-ordering

Future work:
Extension to multi-processor distributed systems
Combination of DVS and stop-go scheduling

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 31 / 34

Conclusions

Thank you for your attention

Any questions?

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 32 / 34

Additional slides

Sketch of proof of theorem 1

1 Define F as

F =

|V |∏
j=1

exp−aidltidlj

2 We can reduce the above to

F = c ·
(
T|V | − T

′
|V |

)
·
|V |−1∏
j=1

Tj − T
′
j

Tj − T idl
(1)

From which we can derive

∂F

∂T|V |

> 0 (2)

3 Also, we can show that ∂F
∂ω

< 0. Hence the theorem

Back

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 33 / 34

Additional slides

Binary Integer Program for a given target temperature

Maximise 1
subject to xv ∈ {0, 1} ∀ v ∈ V

xv1 6 xv2 ∀ (v1, v2) ∈ E
A1Tx > b1
A2Tx 6 b2

whereA1v =
T t − T ′′v

fact(tactj)(T t − T idl)
, b1 = fidl(ω− τtot),A2v = τ(v),

b2 = τtot − (fact)−1
(
Tact − T t

Tact − T0

)
. Back

P. Kumar, L. Thiele (TIK, ETH Zürich) Thermally Optimal Stop-Go Scheduling ASP-DAC 2011, Yokohama 34 / 34

