
LEAKAGE CONSCIOUS DVS SCHEDULING FOR PEAK TEMPERATURE MINIMIZATION

Vivek Chaturvedi Gang Quan Florida International University Miami, FL, USA

OUTLINE

- Introduction
- Related work
- System models
- Fundamental principles on peak temperature minimization
- Summary

THE EXPONENTIALLY INCREASED POWER DENSITY

Sources: C. Isci, ISAC, 2007

WHY TEMPERATURE MATTERS

- High cooling/packaging cost
 - 1-3 dollar/watt more packaging/cooling
 - In data center, for every one watt computing, 1 to 1¹/₂ watt for cooling
- Reliability:
 - 10°C rise in temperature can result in 50% reduction in system life span
- Performance:
 - 15°C rise in temperature can add approximately 10 -15% circuit delay
- Other issues
 - Increase leakage power consumption

THE LEAKAGE POWER CONSUMPTION

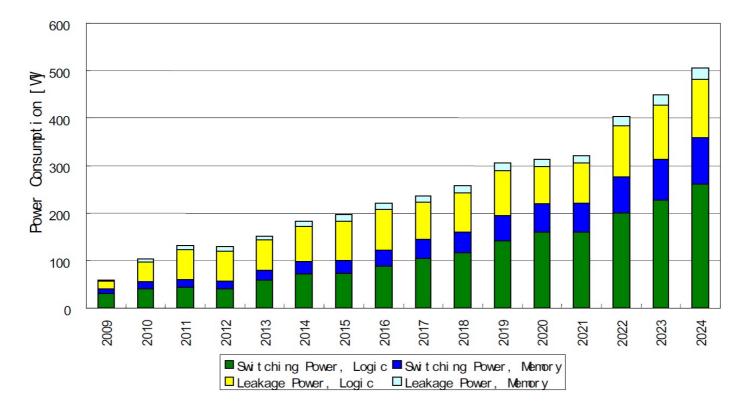


Figure SYSD11 SOC Consumer Stationary Power Consumption Trends

Leakage power consumption becomes a significant component in the overall power consumption at the deep submicron domain

THE LEAKAGE TEMPERATURE INTERPLAY

 $I_{leak} = I_s \left(\mathcal{A} \cdot T^2 \cdot e^{((\alpha V + \beta)/T)} + \mathcal{B} \cdot e^{(\gamma V + \delta)} \right)$

T : Temperature, *V* : Supply voltage, $I_s \mathcal{A}, \mathcal{B}, \alpha, \beta, \gamma, \delta$: Technology dependent constants

- The positive feedback loop
 - high power consumption → high temperature → high leakage power → high power consumption

The leakage/temperature dependency becomes critical in thermal aware computing !

THERMAL AWARE VS. POWER AWARE COMPUTING

Closely related

Low power consumption → low heat generation → low temperature

Distinct different

- Optimal power aware solutions are not necessarily optimal for temperature reduction
 - o ref. Skadron et al. 2003, Bansal et al. 2007

The extensive power aware techniques cannot be readily used for thermal aware computing. New techniques need to be developed.

THE PROBLEM

- How do we adjust the system's performance so that the peak temperature can be minimized?
 - A real-time job within a given interval
 - A periodic real-time task

RELATED WORK

- Dynamic power consumption reduction (e.g. Yao et al. 1995, Ishihara et al. 1998, Pillai et al., 2001)
- Two fundamental principles
 - Principle 1: Using the lowest constant speed is the schedule that consumes the minimum dynamic energy
 - Principle 2: If a single lowest constant speed is not available, then using the two closest neighboring speeds is the optimal solution in dynamic energy reduction

RELATED WORK

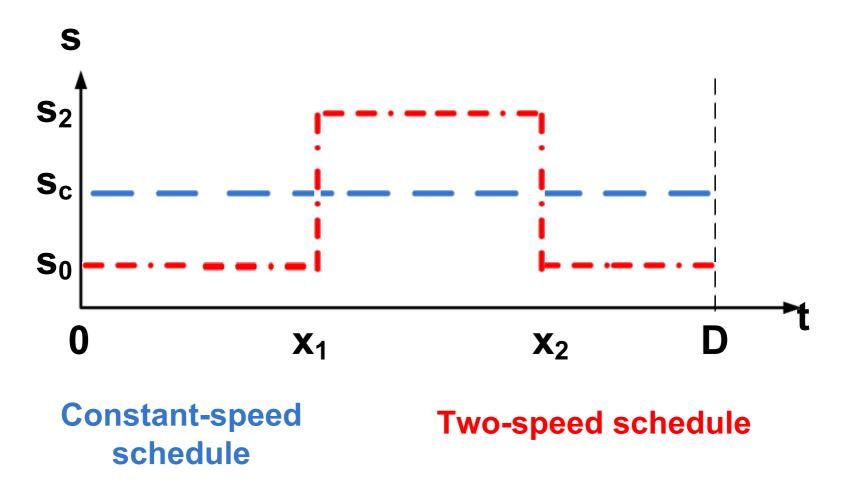
- Overall power reduction assuming constant leakage (e.g. Jejurikar et al. 2004, Quan et al. 2005)
 - Reducing both dynamic and leakage power consumption
 - Constant leakage
 - No temperature/leakage dependency

RELATED WORK

- Thermal aware scheduling with no temperature /leakage dependency (e.g. Wang et al, 2006, Zhang et al. 2007)
 - No leakage power or constant leakage power consumption
- Power/thermal aware scheduling with leakage/temperature dependency
 - Leakage power changes with only temperature (e.g. Chen et al. 2009, Chantem et al. 2009)
 - Leakage power changes with both temperature and supply voltage (e.g. Quan et al 2009)

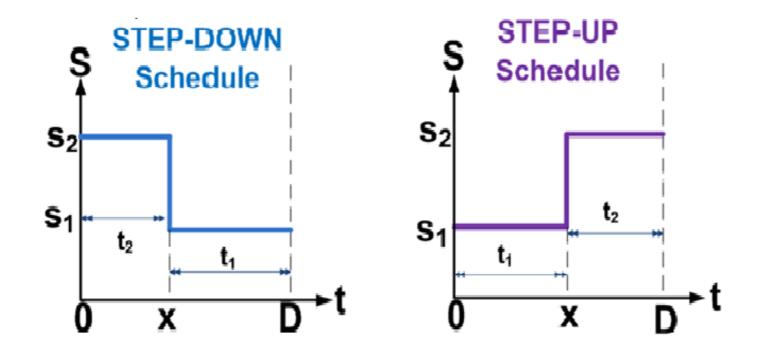
SYSTEM MODELS

- Power model
 - $P_{Total} = P_{dyn} + P_{leak}$
 - $P_{dyn} = C_2 V_{dd}^3(k)$
 - P_{leak}
 - $P_{\text{leak}} = C_0(k) \cdot V_{\text{dd}}(k) + C_1 T$
 - Varies with both temperatures and supply voltages


SYSTEM MODELS

• Thermal model

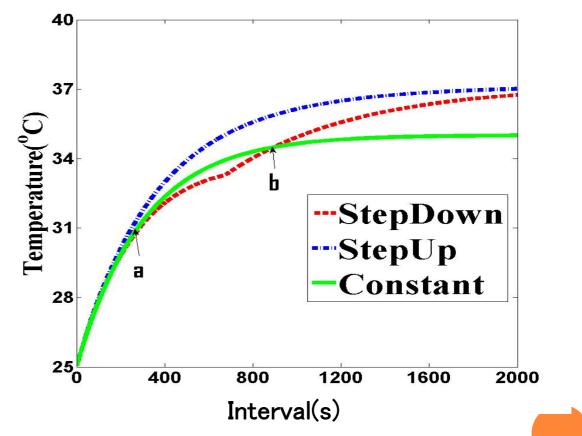
$$\frac{dT(t)}{dt} = aP(t) - bT(t)$$


- T(t): temperature
- *P(t)*: the power consumption
- o a,b: cooling constants
- Commonly used chip level thermal model (e.g. Chantem et al. 2009, Chen et al. 2009, Quan et al. 2009)

MOTIVATIONS

Is the constant speed schedule or the neighboring two-speed schedule still the optimal choice in peak temperature reduction?

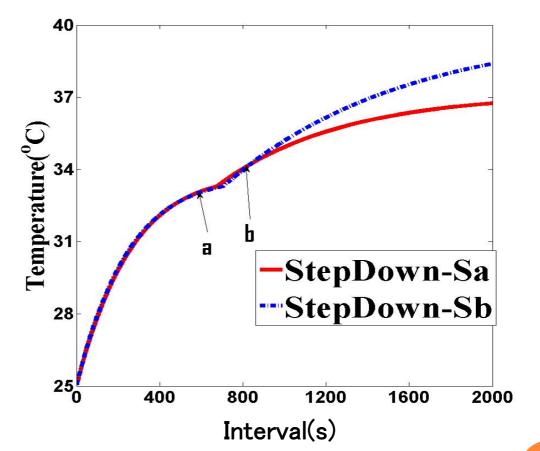
DIFFERENT TWO-SPEED SCHEDULES



EMPIRICAL STUDIES

- Setup
 - Based on UC Berkley's BSIM device model
 - 65nm technology
 - Conventional air cooling
 - Ambient temperature 25°C
 - Available supply level: 0.6v : 0.05v : 1.3v

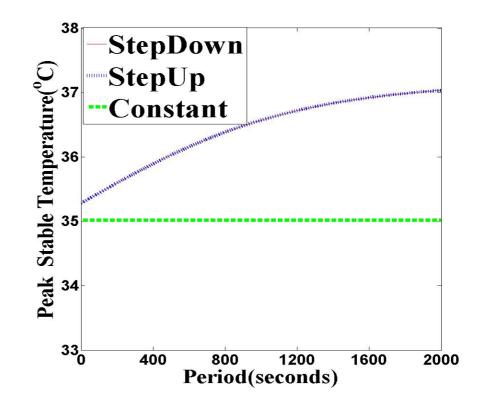
PEAK TEMPERATURES FOR INTERVALS WITH DIFFERENT LENGTHS


- Constant speed schedule
 - 0.80 V
- Two two-speed schedules
 - (0.75V, 0.85 V)
 - Step-down schedule
 - Step-up schedule

Constant schedule is not always the best choice anymore!

PEAK TEMPERATURES FOR INTERVALS WITH DIFFERENT LENGTHS

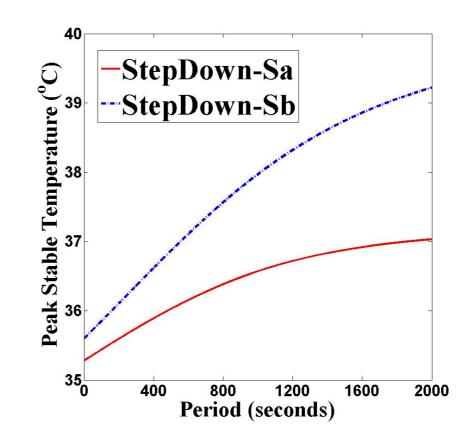
- Neighboring two-speed schedules Sa
 - (0.75V, 0.85 V)
 - Step-down schedule
- Non-neighboring twospeed schedules Sb
 - (0.75V, 0.9 V)
 - Step-down schedule


The neighboring two-speed schedule does not always outperform the non-neighboring two-speed schedule!

FUNDAMENTALS ON PEAK TEMPERATURE REDUCTION WITHIN AN INTERVAL

- Theorems formally formulated and proved
 - When the lowest constant speed can still outperform other two-speed schedules in reducing the peak temperature
 - Step-up schedule always results in the highest peak temperature among all two-speed schedules
 - A two-speed schedule with two neighboring speeds is not always better than two non-neighboring speeds schedule

PEAK STABLE TEMPERATURE FOR TASKS WITH DIFFERENT PERIODS


- Constant speed schedule
 - 0.80 V
- Two two-speed schedules
 - (0.75V, 0.85 V)
 - Step-down schedule
 - Step-up schedule

Constant schedule seems to still be the best choice !

PEAK STABLE TEMPERATURES FOR TASKS WITH DIFFERENT PERIODS

- Neighboring two-speed schedules Sa
 - (0.75V, 0.85 V)
 - Step-down schedule
- Non-neighboring twospeed schedules Sb
 - (0.75V, 0.9 V)
 - Step-down schedule

The neighboring two-speed schedule seems to consistently outperform the non-neighboring two-speed schedule

FUNDAMENTALS ON PEAK STABLE TEMPERATURE MINIMIZATION

- Theorems formally formulated and proved
 - The lowest constant speed schedule outperforms any two-speed schedule in minimizing the peak temperature at the stable status.
 - The peak temperature at the stable status by the neighboring two-speed schedule is no more than that by a non-neighboring two-speed schedule

SUMMARY

- Temperature does matter !
- Power aware and thermal aware computing related but distinctly different
- Leakage/temperature dependency is critical in thermal aware design at the deep submicron domain
- Establish several fundamental principles and guidelines to minimize the peak temperature
 - Within a given interval
 - Stable status

Thank You!