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Presentation outline

» Distributed shared memory multicore systems
» Memory consistency
» Sequential and weak memory consistency models

» Realization sequential and weak consistency models in
the Network-on-chip based multi-core platform

» Experimental results
» Conclusion



Shared memory multicore systems

McNoC (NoC based
multicore systems)

» Promising solution to the design of
multicore systems

» Integration of computation and
communication

Shared memory
organization:

» UMA or SMP architectures
» NUMA or DSM architectures

» PM node: Processor-memory
node
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Figure: Homogeneous McNoC



Memory consistency

» A read should return the (most recent) value.

» Write propagation or atomicity

» Write serialization: writes seen in the same order

» Synchronization: avoid dependencies and data races

» Synchronization primitives/APIs
» Underlying hardware support

Memory consistency is related to the:

» Memory consistency determines the order on shared memory
operations execution

» Ordering constraint: on shared memory operations

» What kind of shared memory operations can be overlapped
for what program segment?



Memory consistency models (MCMs)

» Various MCMs are based on different ordering constraints.
p Strict consistency (atomic consistency) [Hutto et al]
» Cache consistency (Cache coherence)
» Sequential consistency [Lamport et al]
» Causal Consistency [Hutto et al]
» Relaxed consistency models
» Weak consistency [Dubois et al] (our focus)
» Release consistency [Gharachorloo et al]

» PRAM consistency (also known as FIFO consistency)
[Lipton et al]

» Proecessor consistency [Goodman et al]



Sequential consistency model

The sequential consistency has to maintain:

» The program order among operations of each individual
processor in multiprocessor system

» The sequential order among multiple processors in the system.

Dekker’s algorithm for critical sections has the
problems:

» Only software solution
» Deadlock
» Mutual exclusion



Global orders to enforce for SC

» The sequential consistency (often called Strong Ordering) model
does not allow the reordering in the shared memory operations in

the multi-processor system:

» Read— Read
» Read— Write
» Write— Read
» Write— Write
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Figure: a) Strong Ordering b) Global Orders




Realization of Sequential consistency

» The processor is stalled on A o NODE
Issuance of a shared memory T
operation &

» On completion of a shared =
memory operation next 1 0 =
operation is issued to the shared SOMPLETED
memory(1).

» All the memory operations are

Issued and completed in the
order specified in the program.
Program order is maintained.

» Sequential order is maintained
by read-modify-write operation.

Figure: Memory operations flow
in Sequential consistency



Limitations in sequential consistency

Sequential consistency model restricts system
optimizations [S. V. Adve et al]:

Hardware optimizations:
» Write buffers : read after write bypass store buffer
» General interconnection network:
» Caches: coherence protocol, write completion

Software (compiler) optimizations:
» The compiler shifting to avoid data dependency.
» Loop unrolling: to reduce the control dependency

» Register allocation: to a memory variable to reduce memory
references



Relax the requirements

» As SC does not allow these performance optimizations
» Relaxed consistency models emergence
» Relaxation among the independent shared memory operations

Relax program order requirement:
» Read — Read
» Read — Write
» Write — Read
» Write — Write

Relax write atomicity requirement:

» Write overlapping with following operations in a synchronized
program
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Weak memory consistency

Principle:

» Weak consistency (weak ordering) model classify
shared memory operations as data and
synchronization operations

» Data operations between two consecutive
synchronization points can be reordered

» Atomic or sequential synchronization operations
must be uninterrupted

Working:

» All previously issued outstanding data operations
must be completed before the issuance of
synchronization operation and vice versa.

READ/WRITE
READ/WRITE
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SYNCHRONIZATION
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READ/WRITE
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SYNCHRONIZATION
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READ/WRITE
READ/WRITE

WEAK ORDERING
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Global orders to enforce for WC

There is possible interference between the data and
synchronization operations:

» data — Synchronization
» Synchronization — data
» Synchronization — Synchronization

Enforcement of global orders avoid interference

READ/WRITE
READ/WRITE
1
SYNCHRONIZATION
7 SYNCHRONIZATION| | READIWRITE || SYNCRONIZATION
READ/WRITE T T T
READ/WRITE
7 R A WAITE | |SYNCHRONIZATION| |SYNCRONIZATION
SYNCHRONIZATION
v
READ/WRITE
READ/WRITE

Figure: a) Weak consistency b) Global Orders
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Realization of weak consistency

Transaction counter approach:

» A counter in each processor to
keep track of outstanding data
operations.

» The data operations affect the
counter

» The counter zero value

» The synchronization operations
does not affect but check the
counter

Scalability study:

» Study the two consistency models
in the context of NoC based
multicore architectures

A PM NODE

SHARED
MEMORY
OPERATIONS

TE=

SYNC ACK

CONTINUE ?

az

Figure: Memory operations
flow in weak consistency
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Comparison of both the SC and WC

Sequential Consistency:

» Allows no overlapping
» Processor is stalled till completion of previous operation

Weak Consistency:
» Data operations are overlapped

» But cannot be overlapped with the synch operations
» Transaction counter based realization approach

I WRITE 1 |
v
[syncHRONIZATION] | SYNCHRONIZATION |
v
@ WRITE 2
— '

[synchroNiZATION] |SYNCHRONIZATION|

® mm e ®

Figure: a) Strong Ordering b) Wea& Ordering
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NoC based McNoc platform

Platform features:
» Homogenous McNoC

PM node

Processor

keep_Transaction &
_Going

Transaction Counter
Data Management Engine || :
(V2P, access, Sync.) \ ST

Local Memory:

» Support 2D mesh topology.

» Deflection routing
) . PM PM
» Synchronization Supporter(SS) C*;

» Transaction counter (TC) EMI o Pral | Share
» Distributed shared memory ~ ~ ¢
(DSM) b)

Figure: a) Homogeneous McNoC
b) PM node
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Data Management Engine (DME)

DME features: o

I
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» Distributed shared memory
(DSM)

» Synchronization Supporter(SS)

Counter

Y Y

/ File A —l Fie B
Transaction counterin | ] ¥

DME keeps track of ' _PortA | PoriB
» Processor, Network interfaces
(CICU, NICU)

» Transaction counter (TC) Figure: DME Structure
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Experiments

Experimental setup:

» McNoC platform with DSM
architecture

» Hardware synchronization
support (SS)

» Tests with simple short
Pseudo-code

» Different traffic patterns for
NCS data.

» The critical section in the
CS-node is protected by
the lock in the SYNC-node

/I NON-CRITICAL SECTION
< MEMORY_READ >, < ADDRESS > ;

/I LOCK ACQUIRE
< LOCK_ACQUIRE >, < ADDRESS > ;

/I CRITICAL SECTION
< MEMORY_READ >, < ADDRESS > ;

/I LOCK RELEASE
< LOCK_RELEASE >, < ADDRESS >;

/I NON-CRITICAL SECTION

QEMORY_READ >, < ADDRESS >;

< MEMORY_WRITE >, < ADDRESS >, < DATA >;

< MEMORY_WRITE >, < ADDRESS >, < DATA >;

< MEMORY_WRITE >, < ADDRESS >, < DATA >;

~

/I REMOTE SHARED WRITE
/I REMOTE SHARED READ

/I REMOTE LOCK ACQUIRE

/I REMOTE SHARED WRITE
/I REMOTE SHARED READ

/I REMOTE LOCK RELEASE

/I REMOTE SHARED WRITE
/I REMOTE SHARED READJ

Figure: Test-code

Figure: Synchronization and data requests
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Results

Impact of network size on code and consistency latencies:
» Scalability study of the two consistency models

» The synchronization latency rises due to network traffic, delay and
waiting time for acquiring lock (lock is locally polled).

» The hotspot traffic pattern for the synchronization operations
suggest the clustered networks up to 16 nodes cluster size
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Figure: Impact on the code latency  Figure: Impact on the consistency latency
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Conclusion and future work

Conclusion:

» Weak consistency scale well as compared to the sequential
consistency model

» Average synchronization latencies increase exponentially as the
network scales. Suggest network clusters.

Future work:

» Exploration and analysis of the other relaxed memory consistency
models
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Questions!
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