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Motivational Example
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 A (Simple) SDF Graph
 node: computation block

 arc: FIFO queue

 Sample rate: number of
samples consumed or
produced per node firing

 A node is fireable only after it has enough number of 
samples on all input arcs

 A mapping instance
(nodes to processors)
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Arc buffer size affects the throughput!
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 Scheduling result when the buffer size of arc AB is 4

 Scheduling result when the buffer size of arc AB is 6
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Unfolding affects the throughput!
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 Motivational Example 2
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Related Work
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 Related Work

 All previous work assumed “static scheduling” 

 The optimization problem is NP-hard

 Extensive work has been performed recently – prove 
that the problem becomes practically important
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Dynamic vs Static scheduling
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 Pros of dynamic scheduling over static 
scheduling
 Can get the effect of unfolding naturally

 Easy to represent of schedule and uses less memory 
space

 May improve system performance when the 
execution times are vary at run-time

 But we need
 Run-time system to schedule the nodes dynamically

 Priority assignment to the mapped nodes



Problem Definition
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 Input
 Target Architecture: A heterogeneous MPSoC

 Input Information
 An SDF graph with given execution time of nodes

 A given static mapping of nodes to processors

 A known dynamic scheduling policy on each processor

 Constraints: Throughput

 Problem
 Minimize the total buffer requirement and determine the 

buffer size of all arcs 

 (Determine the priority of the mapped nodes)



Proposed Solution
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 Overall Optimization Flow
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GA-based Heuristic
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 JGAP package is used for current implementation
 The size of each buffer size is encoded into chromosome and 

GA evaluate chromosome by scheduling dynamically with 

encoded buffer size information

 Fitness value of chromosome is determined by feasibility of 

scheduling result based on given throughput constraint

 Optimization process is repeated until fitness value converges 

or pre-defined upper bound of generation steps

buffer 1 size buffer 2 size buffer n size...

gene

chromosome



Feasibility Analysis
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 Simulate the system in which each processor 
performs dynamic scheduling of the mapped 
nodes for each candidate solution (given buffer 
sizes of all arcs)
 All mapped nodes are assigned priorities

 We consider the communication overhead between 
processors as well as execution time variation of the 
nodes

 We repeat the execution of the graph until we obtain 
the throughput



Throughput Computation
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 Approximate throughput
 Since there is no guarantee that the same scheduling 

pattern will be repeated in dynamic scheduling, the 
following equation is defined to calculate throughput 
in dynamic scheduling

 If the number of iterations are increased to infinite, 
the value of equation converges to specific value and 
it can be considered as throughput

 In most case, after 10 iterations the value converges
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Priority Assignment
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 Proposed heuristic
 We assign a different priority of each invocation for a 

same node

 To set priority to each node invocation, calculate “as 
late as possible(ALAP)” scheduling time to sink node 
as following

 P(Nlast) = Ex(N) + max{P(K1)}

where node K is in {successors of node N}

 P(Nk) = P(Nlast) + (rep(N) – k) * Ex(N)

 Optimal assignment is left as a future work



Experimental Results

14

 Comparison of total buffer size with an optimal solution 
in [14] 
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Comparison with a pipelined method
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 Pipelining is a popular way of throughput improvement

 But pipelining needs pipeline buffers.

 Paper [11] finds an sub-optimal pipelining for an SDF 
graph without considering unfolding

Throughput Total buffer size

[11] 1/3 8

Proposed Method 1/3 6



Scalability of the proposed technique
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 Elapsed time with various input sets
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Conclusion
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 We propose a static mapping and dynamic 
scheduling method that has several benefits over 
static scheduling methods.

 The proposed GA_based algorithm minimizes 
the buffer requirement under the throughput 
constraints.

 A simple heuristic for priority assignment is also 
proposed – produces good results

 The proposed technique is scalable, while 
producing near-optimal results.



Future work
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 Find an optimal mapping

 Find an optimal priority assignment scheme

Thank you!


