
Minimizing Buffer Requirements for
Throughput Constrained Parallel

Execution of Synchronous Dataflow
Graph

Seoul National University, CAPLABT

Tae-ho Shin1, Hyunok Oh2 and Soonhoi Ha1

1: Seoul National University

2: Hanyang University

Contents

2

 Introduction
 Motivational Example

 Related Work

 Problem Definition

 Proposed Solution
 Overall Structure

 Proposed Dynamic Scheduling Method

 Experiments

 Conclusion

Motivational Example

3

 A (Simple) SDF Graph
 node: computation block

 arc: FIFO queue

 Sample rate: number of
samples consumed or
produced per node firing

 A node is fireable only after it has enough number of
samples on all input arcs

 A mapping instance
(nodes to processors)

2132A B C

Proc
0

Proc
1

Proc
2

Node A B C

Mapped Processor 1 2 3

Execution Time 1 2 2

Arc buffer size affects the throughput!

4

 Scheduling result when the buffer size of arc AB is 4

 Scheduling result when the buffer size of arc AB is 6

2132A B C

Proc
0

Proc
1

Proc
2

Node A B C

Mapped Processor 1 2 3

Execution Time 1 2 2

A A

B B

A

C

A A A

B B

C

Unfolding affects the throughput!

5

 Motivational Example 2

A

B C

D

E
1 1

1 1 1
1

1
1 2

2

A

B

D

C

E

A

B

D

C

EA

B C

D E

Node A B C D E

Mapped Processor 2 1 1 2 2

Execution Time 1 1 1 1 1

<Scheduling result without unfolding>

<Scheduling result with 2-unfolding>

Related Work

6

 Related Work

 All previous work assumed “static scheduling”

 The optimization problem is NP-hard

 Extensive work has been performed recently – prove
that the problem becomes practically important

Scheduling

Policy

Fixed Number of

Processors

Unlimited Number

of Processors

Static scheduling

Pipeline, max-plus, model

checking, scenario based,

etc.

Without unfolding

With unfolding

Dynamic

Scheduling
Proposed Method N/A

Dynamic vs Static scheduling

7

 Pros of dynamic scheduling over static
scheduling
 Can get the effect of unfolding naturally

 Easy to represent of schedule and uses less memory
space

 May improve system performance when the
execution times are vary at run-time

 But we need
 Run-time system to schedule the nodes dynamically

 Priority assignment to the mapped nodes

Problem Definition

8

 Input
 Target Architecture: A heterogeneous MPSoC

 Input Information
 An SDF graph with given execution time of nodes

 A given static mapping of nodes to processors

 A known dynamic scheduling policy on each processor

 Constraints: Throughput

 Problem
 Minimize the total buffer requirement and determine the

buffer size of all arcs

 (Determine the priority of the mapped nodes)

Proposed Solution

9

 Overall Optimization Flow

JGAP

chromosome
(decide size of
each buffer)

fitness function

update

Generate SDF graph
(without size of each buffer)

Schedule

feasible?

Fitness value = 0
fitness value =

1 / sum of buffer size

yes no

GA-based Heuristic

10

 JGAP package is used for current implementation
 The size of each buffer size is encoded into chromosome and

GA evaluate chromosome by scheduling dynamically with

encoded buffer size information

 Fitness value of chromosome is determined by feasibility of

scheduling result based on given throughput constraint

 Optimization process is repeated until fitness value converges

or pre-defined upper bound of generation steps

buffer 1 size buffer 2 size buffer n size...

gene

chromosome

Feasibility Analysis

11

 Simulate the system in which each processor
performs dynamic scheduling of the mapped
nodes for each candidate solution (given buffer
sizes of all arcs)
 All mapped nodes are assigned priorities

 We consider the communication overhead between
processors as well as execution time variation of the
nodes

 We repeat the execution of the graph until we obtain
the throughput

Throughput Computation

12

 Approximate throughput
 Since there is no guarantee that the same scheduling

pattern will be repeated in dynamic scheduling, the
following equation is defined to calculate throughput
in dynamic scheduling

 If the number of iterations are increased to infinite,
the value of equation converges to specific value and
it can be considered as throughput

 In most case, after 10 iterations the value converges

sinterationn finish totime
)(lim

n
GT

n 



Priority Assignment

13

 Proposed heuristic
 We assign a different priority of each invocation for a

same node

 To set priority to each node invocation, calculate “as
late as possible(ALAP)” scheduling time to sink node
as following

 P(Nlast) = Ex(N) + max{P(K1)}

where node K is in {successors of node N}

 P(Nk) = P(Nlast) + (rep(N) – k) * Ex(N)

 Optimal assignment is left as a future work

Experimental Results

14

 Comparison of total buffer size with an optimal solution
in [14]

3

4

5

6

7

8

5 7 9 11

1
/T

h
ro

u
h

g
p

u
t

Total Buffer Size

[14]

Proposed

2132A B C

Proc
0

Proc
1

Proc
2

Node A B C

Mapped Processor 1 2 3

Execution Time 1 2 2

Comparison with a pipelined method

15

 Pipelining is a popular way of throughput improvement

 But pipelining needs pipeline buffers.

 Paper [11] finds an sub-optimal pipelining for an SDF
graph without considering unfolding

Throughput Total buffer size

[11] 1/3 8

Proposed Method 1/3 6

Scalability of the proposed technique

16

 Elapsed time with various input sets

of

instances

of

processors

of

edges

Throughput

constraints

Elapsed

time

30 3

5
1 / 100 190 s

1 / 44 192 s

32
1 / 100 134 s

1 / 34 133 s

100 7

20
1 / 100 1052 s

1 / 75 1059 s

54
1 / 100 588 s

1 / 79 665 s

Conclusion

17

 We propose a static mapping and dynamic
scheduling method that has several benefits over
static scheduling methods.

 The proposed GA_based algorithm minimizes
the buffer requirement under the throughput
constraints.

 A simple heuristic for priority assignment is also
proposed – produces good results

 The proposed technique is scalable, while
producing near-optimal results.

Future work

18

 Find an optimal mapping

 Find an optimal priority assignment scheme

Thank you!

