Minimizing Buffer Requirements for
Throughput Constrained Parallel

Execution of Synchronous Dataflow
Graph

Seoul National University, CAPLABT
Tae-ho Shint, Hyunok Oh? and Soonhoi Ha'

1. Seoul National University
2. Hanyang University

Contents

» Introduction
Motivational Example
Related Work
Problem Definition

» Proposed Solution
Overall Structure
Proposed Dynamic Scheduling Method

» Experiments

» Conclusion

2

Motivational Example
» A (Simple) SDF Graph

node: computation block

arc: FIFO queue 2 3 1 2 e

Sample rate: number of
samples consumed or
produced per node firing

A node is fireable only after it has enough number of
samples on all input arcs

» A mapping instance ____Node __JAIBIC

(nodes 1) proceSSOrS) Mapped Processor 1 2 3

Execution Time 1 2 2

Arc buffer size affects the throughput!

2 3 1 2
OaO=ONN

Mapped Processor 1 2 3

Execution Time 1 2 2

» Scheduling result when the buffer size of arc AB is 4

AlA A

C

» Scheduling result when the buffer size of arc AB is 6
A[A|A

B B

Unfolding affects the throughput!

» Motivational Example 2

B|C
AlD E

<Scheduling result without unfolding>

BIB|C|C
Mapped Processor 2 AIlAIDIDIEIE

Execution Time 1 1 1 1 1

<Scheduling result with 2-unfolding>

Related Work
» Related Work

Scheduling Fixed Number of Unlimited Number
Policy Processors of Processors

Pipeline, max-plus, model Without unfolding
Static scheduling checking, scenario based,
etc. With unfolding
Dynamic
Scheduling Proposed Method N/A

All previous work assumed “static scheduling”
The optimization problem is NP-hard

Extensive work has been performed recently — prove
that the problem becomes practically important

Dynamic vs Static scheduling

» Pros of dynamic scheduling over static
scheduling
Can get the effect of unfolding naturally

Easy to represent of schedule and uses less memory
space

May improve system performance when the
execution times are vary at run-time

» But we need

Run-time system to schedule the nodes dynamically
Priority assignment to the mapped nodes

Problem Definition

» Input
Target Architecture: A heterogeneous MPSoC

Input Information
An SDF graph with given execution time of nodes
A given static mapping of nodes to processors
A known dynamic scheduling policy on each processor

Constraints: Throughput

» Problem

Minimize the total buffer requirement and determine the
buffer size of all arcs

(Determine the priority of the mapped nodes)

Proposed Solution

» Overall Optimization Flow

Generate SDF graph JGAP

(without size of each buffer)
(decide size of
each buffer)
Schedule \

feasible?

fitness value =

1 / sum of buffer size Fitness value = 0

GA-based Heuristic

» JGAP package is used for current implementation

The size of each buffer size is encoded into chromosome and
GA evaluate chromosome by scheduling dynamically with
encoded buffer size information

chromosome

buffer 1 size | buffer 2 size buffer n size

gene
Fitness value of chromosome is determined by feasibility of
scheduling result based on given throughput constraint

Optimization process is repeated until fitness value converges
or pre-defined upper bound of generation steps

Feasibility Analysis

» Simulate the system in which each processor
performs dynamic scheduling of the mapped
nodes for each candidate solution (given buffer
sizes of all arcs)

All mapped nodes are assigned priorities

We consider the communication overhead between
processors as well as execution time variation of the
nodes

We repeat the execution of the graph until we obtain
the throughput

Throughput Computation
» Approximate throughput

Since there is no guarantee that the same scheduling
pattern will be repeated in dynamic scheduling, the
following equation is defined to calculate throughput
In dynamic scheduling

] n
T(G) =
©) InLrptimetofinishninterations

If the number of iterations are increased to infinite,
the value of equation converges to specific value and
it can be considered as throughput

In most case, after 10 iterations the value converges

Priority Assignment

» Proposed heuristic

We assign a different priority of each invocation for a
same node

To set priority to each node invocation, calculate “as
late as possible(ALAP)” scheduling time to sink node
as following

P(N.) = EX(N) + max{P(K;)}
where node K is in {successors of node N}
P(N,) = P(N,.) + (rep(N) — k) * Ex(N)

Optimal assignment is left as a future work

Experimental Results

» Comparison of total buffer size with an optimal solution

w _g./ThUr_louhngut\l o)

In [14]

+[14]

Proposed

____Node __|AB|C

Mapped Processor 1 2 3

Execution Time 1 2 2

To7tal Buffer Slgze 1

Comparison with a pipelined method

» Pipelining is a popular way of throughput improvement
» But pipelining needs pipeline buffers.

» Paper [11] finds an sub-optimal pipelining for an SDF
graph without considering unfolding

_ Throughput Total buffer size

[11] 1/3 8
Proposed Method 1/3 6

Scalabllity of the proposed technigue

» Elapsed time with various input sets

30

100

3

of # of # of
Instances | processors | edges
5

32

20

54

Throughput
constraints

1/100
1/44
1/100
1/34
1/100
1/75
1/100
1/79

time
190 s
192 s
134 s
133 s
1052 s
1059 s
588 s

665 s

Conclusion

» We propose a static mapping and dynamic

scheduling method that
static scheduling methoc

nas several benefits over
S.

» The proposed GA_based algorithm minimizes
the buffer requirement under the throughput

constraints.

» A simple heuristic for priority assignment is also
proposed — produces good results

» The proposed technique Is scalable, while

producing near-optimal

|7

results.

Future work

» Find an optimal mapping
» Find an optimal priority assignment scheme

Thank youl

