

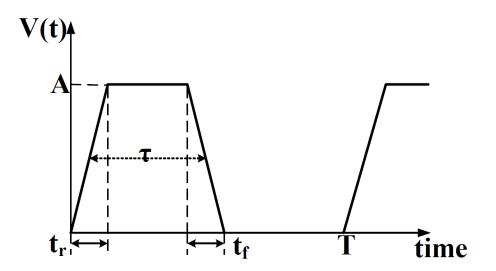
CLOCK TREE OPTIMIZATION FOR ELECTROMAGNETIC COMPATIBILITY (EMC)

Xuchu Hu, Matthew R. Guthaus University of California Santa Cruz

http://vlsida.soe.ucsc.edu

- □ Background
- Problem formulation
- Van Ginneken's dynamic programming
- □ Our algorithm
- □ Experimental results
- □ Conclusion

Background

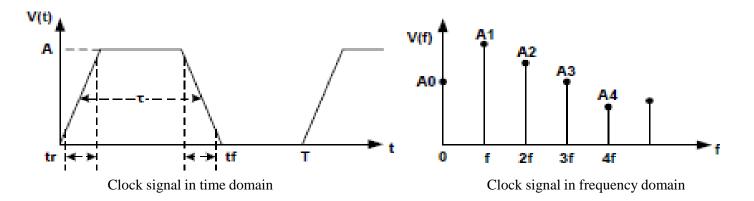

- Problem formulation
- Van Ginneken's dynamic programming
- Our algorithm
- □ Experimental results
- □ Conclusion

Electromagnetic Interference (EMI)

- □ On-chip Electromagnetic Interference (EMI)
 - Signal integrity, reflections
 - Simultaneous switching noise (SSN)
- Previous work
 - Decoupling capacitances
 - Random jitter insertion, spread spectrum
 - Clock design
 - Polarity of buffers
 - Skew
 - Reduce buffer sizes

Spectral Analysis of Clock Signal

- Clock in time domain
 - Period T, frequency f, amplitude A
 - \square Rising/falling time, t_r/t_f
 - \Box duty cycle $D = \tau/T$



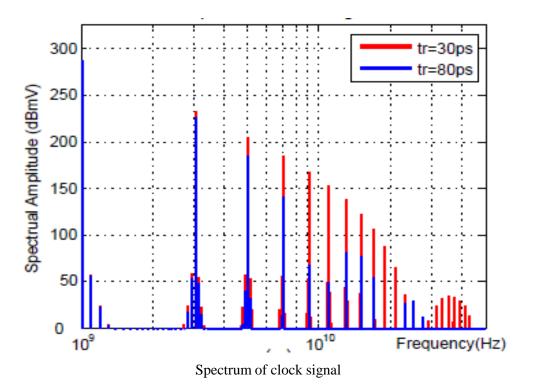
Spectral Analysis of Clock Signal

Clock in frequency domain

- Fourier analysis
- Periodic function → sum of a series of sine and cosine functions

$$V(t) = A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(\omega_0 t + \phi_2) + A_3 \cos(\omega_0 t + \phi_3) + \dots$$
$$A_0 = \frac{1}{T} \int_0^T v(t) dt = A \frac{\tau}{T}$$
$$|A_n| = 2A \frac{\tau}{T} \left| \frac{\sin(n\pi\tau/T)}{n\pi\tau/T} \right| \frac{\sin(n\pi\tau/T)}{n\pi\tau/T} ||\frac{\sin(n\pi\tau/T)}{n\pi\tau/T}|$$

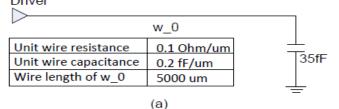
Spectral Analysis of Clock Signal


7

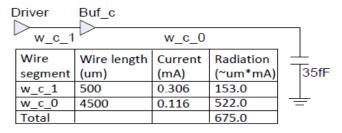
□ Majority of spectrum power lies below f_{max} $f_{max} \approx 1/t_r$

□ High-frequency spectrum: *rising/fall time*, *t_i/t_f*

 $t_r=30ps f_{max}=31.8G$


t_r=80ps f_{max}=11.9G

Radiation Emission


- □ Radiation emission
 - □ Radiation power ∝ frequency × length × current
 - $\Box \text{ Frequency } \rightarrow \text{fixed}$
 - \Box Total wire length \rightarrow fixed

 $\Box \text{ Different buffer locations} \rightarrow \underset{\text{Driver}}{\text{different radiation}}$

Driver		Buf_a		
	w_a_1		w_a_0	
Wire	Wire length	Current	Radiation	
segment	(um)	(mA)	(~um*mA)	35fF
w_a_1	2500	0.174	435.0	
w_a_0	2500	0.224	560.0	<u> </u>
Total			995.0	
		(b)		

Driver	Buf_b	•		
w_	b_1	w_		
Wire	Wire length	Current	Radiation	
segment	(um)	(mA)	(~um*mA)	35fF
w_b_1	1500	0.296	444.0	
w_b_0	3500	0.166	581.0	<u> </u>
Total			1025.0	

(d)

□ Background

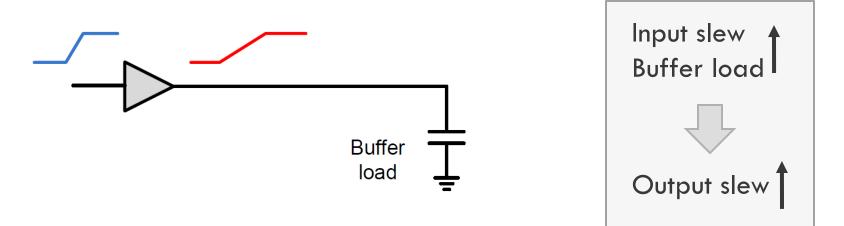
Problem formulation

- Van Ginneken's dynamic programming
- Our algorithm
- □ Experimental results
- □ Conclusion

Problem Formulation

□ Given:

- A buffered clock tree T
- **D** Buffer library $L = \{s_1, s_2, s_3, \dots, s_n\}$
- \square Maximum slew rate constraint S_{max}: noise immunity
- \square Minimum slew rate constraint S_{min} : EMC

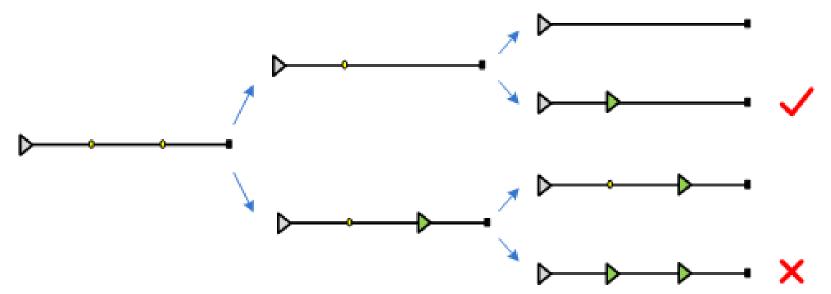

□ Output:

- Minimize skew, power (traditional metrics in CTS)
- □ Location p_i and size s_i of each buffer $b_i \in B$
- Reduce high-frequency spectrum contents

Slew Rates Constraints

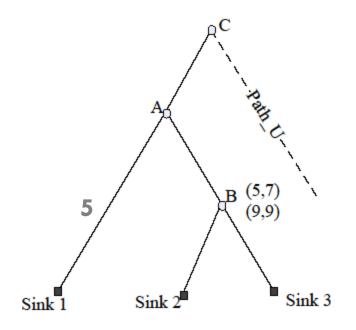
11

Problem: control slew rate in a feasible range
Buffer output slew rate: input slew, buffer load


□ Solution: control the buffer load in a feasible range

 $S_{max} \sim S_{min} \langle - \rangle C^H \sim C^L$

- □ Background
- Problem formulation
- Van Ginneken's dynamic programming
- Our algorithm
- □ Experimental results
- □ Conclusion


Van Ginneken's Dynamic Programming

- Goal: maximize slack/RAT, minimize delay
- □ Method:
 - Generate all possible solution
 - Deleted dominated solutions/Pruning
 - worse down stream load cap & worse RAT/delay

Dynamic Programming in CTS

- \Box Clock tree
 - □ Skew: difference between each pair of sinks
- □ Pruning
 - Base on delay
 - Base on skew

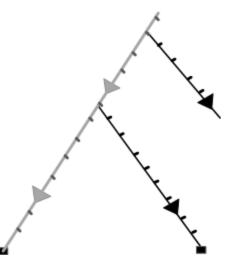
- □ Background
- Problem formulation
- Van Ginneken's dynamic programming

Our algorithm

- Experimental results
- □ Conclusion

Top Level Algorithm

- Dynamic programming
 - Optimize whole tree
 - Optimize the critical path
 - Reduces complexity
- □ All buffers on non-critical path are fixed
- □ Timing of non-critical path are fixed
- □ Non-critical path as reference when do pruning

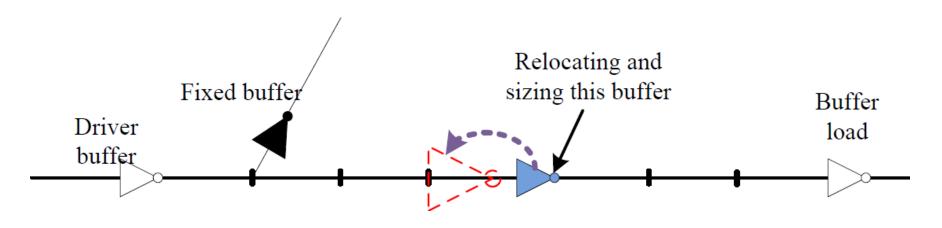

Top Level Algorithm

□ Procedure

- □ Step 1: segment edges
- □ Step 2: relocate and size the critical path (DP)
- □ Step 3: update timing
- □ Step 4: repeat step2~4 until no improvement

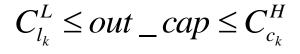
Improvement:

skew, power, radiation, slew rate

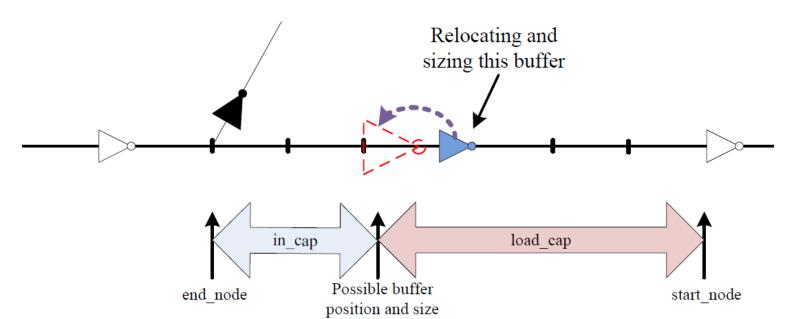

Relocating and Sizing the Critical Path

18

Relocate and size buffers on critical from sink to root For each buffer b_i


Generate all possible position and size combinations (p_i,s_i) Check the capacitance constraints of each combination If satisfy, save this solution

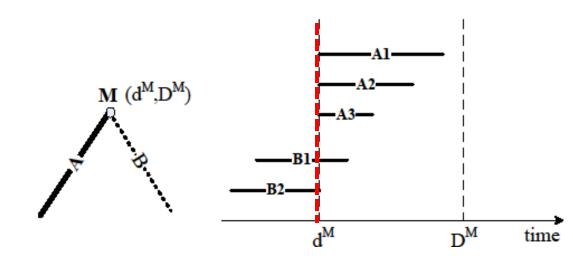
End for



Capacitance Constraints

- 19
- □ Slew rate constraints
- Capacitance constraints

 $in _cap \le C^H$



Interval Solution Pruning

- 20
- □ Only do pruning at merging nodes
- □ Based on minimum/maximum delay
- \Box Delays in original tree: (d^M,D^M)
- □ Classify the solutions into two categories:
 - \Box d =d^M : A1,A2,A3
 - $\Box d < d^M : B1, B2$

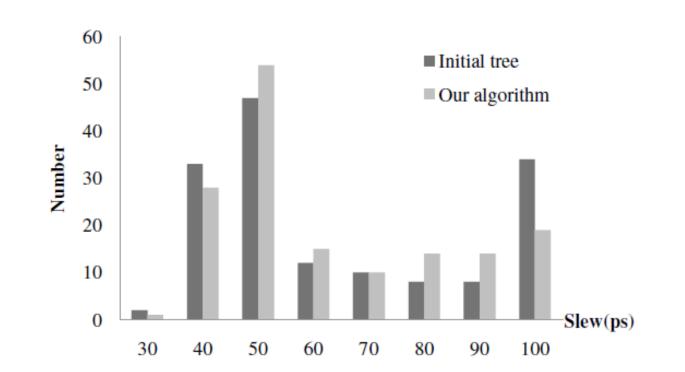
Optimizing a maximum path

Path A: maximum delay path Path B: fixed path M : merging node

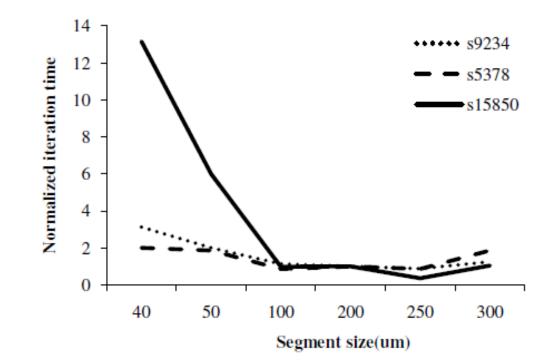
- □ Background
- Problem formulation
- Van Ginneken's dynamic programming
- Our algorithm
- Experimental results
- □ Conclusion

Experimental Setup

- \square 45nm technology
- □ ISCAS benchmarks
- □ Clock frequency: 1GHz
- \square Minimum slew: $S_{min} = 50 ps$
- \square Maximum slew: $S_{max} = 100 ps$
- □ Four different buffers in buffer library L


Experimental Results

23


Benchn	Benchmark Initial tree		Our method								
Name	Sink	Power	Radiation	Skew	Slew $< 50 ps$	Power	Radiation	Skew	Slew $< 50 ps$	CPU	Iteration
					(%)				(%)	(s)	(#)
s5378	179	1.0	1.00	1.00	44	1.02	0.99	0.57	33	0.7	10
s9234	211	1.0	1.00	1.00	43	1.01	0.95	0.49	31	1.5	10
s13207	638	1.0	1.00	1.00	50	1.00	0.88	0.74	30	9.9	9
s15850	534	1.0	1.00	1.00	38	1.00	0.88	0.78	28	5.9	4
s35932	1728	1.0	1.00	1.00	38	1.00	0.94	0.63	32	203.2	19
s38584	1426	1.0	1.00	1.00	64	1.00	0.98	0.81	48	90.7	8
Average	786	1.0	1.00	1.00	46	1.01	0.94	0.67	34	52.0	10

- \square Power: 1% \uparrow
- □ Skew: 33% ↓
- □ Radiation: $6\% \downarrow$
- $\Box \text{ Slew} < 50 \text{ps:} \quad 46\% \rightarrow 34\%$
- \Box Run time: 52s

Slew distribution

Segment size

Conclusions

- □ Comprehensive analysis of EMI in clock tree
- □ A solution for EMI reduction
- Consider both maximum and minimum buffer slew rate
- □ An incremental dynamic programming in CTS

THANKS !

VLSI-DA, UC Santa Cruz