Pulser Gating: A Clock Gating of Pulsed-Latch Circuits

Sangmin Kim, Inhak Han, Seungwhun Paik, and Youngsoo Shin Dept. of EE, KAIST

Contents

- Introduction
 - Pulsed-latch circuits
 - Clock gating synthesis
- Pulser gating synthesis
 - Problem definition
 - Synthesis algorithm
- Experiment results
- Summary

Pulsed-Latch Circuits

- Sequencing element
 - Edge triggered F/F: triggered at fixed instant, large overhead
 - Level-sensitive latch: triggered at varying instant, small overhead

• Pulsed-latch

- Latch driven by a brief pulse (generated by <u>pulse</u> generator)
- Combine the advantage of F/F and latch

Pulsed-Latch Circuits

 Simple migration from F/F circuits to pulsed-latch circuits gives <u>~10% performance improvement</u> and <u>~20% power</u> saving

• Design challenges

- Integrity of pulse shape (pulse can be easily degraded)
- Inserting pulsers
- Automatic placement
- Increasing hold violations
- Applying clock gating
- Power network noise

Pulsed-Latch Circuits

- Power consumption of F/F vs. pulsed-latch circuits
 - Pulsed-latch has less power by 14%
 - Pulser consumes 37% of power \rightarrow gating is important

Clock Gating Synthesis - Review

- 0. Given a gate-level netlist
- **1. Derive a gating function of each latch i:**

 $g_i = \overline{\delta_i \oplus S_i} (\delta_i: \text{latch input, } S_i: \text{latch output})$ -Gating probability: $P(g_i) = \text{Prob}(g_i = 1)$

2. Merge gating functions that are "similar"

-To reduce extra logic to implement gating functions

Clock Gating Synthesis - Review

3. Simplify gating functions

- Division: use existing combinational logic (f), implement only quotient (q) and remainder (r)
- Approximation: remove some terms (with low probability) from gating function

4. Insert clock gating cell between gating function and latches

 $g_i = f \cdot q + r$

Pulser Gating

- Pulser gating: clock gating using pulser (pulse generator)
 - Clock gating can be conveniently integrated into a pulser
 - A pulser can drive <u>a few nearby latches</u>
 - A pulser gates/ungates its latches together becomes very important

How to group latches becomes very important

[Naffziger, JSSC02]

Pulser Gating Synthesis

• Key problem: merge gating functions (of latches) that are functionally similar & physically close

Pulser Gating Synthesis

- Problem definition
 - Given: gating function and location of each latch (after initial placement)
 - Create a set of clusters $\{\mathbb{C}_1, \mathbb{C}_2, \cdots, \mathbb{C}_i\}$; cluster \leftrightarrow a set of latches and a pulser

- Objective

Maximize average gating probability & minimize total literal count of gating functions

– <u>Constraint</u>

• Each pulser must drive load capacitance smaller than C_{max} $C_{load}(\mathbb{C}_i) \leq C_{max}$

Pulser Gating Synthesis

- 1. Compute **similarity** of gating functions
- 2. Create a **similarity graph**
- 3. Perform **clustering**
- 4. Assess clusters
- 5. Pulser insertion for remaining latches

1: Compute Similarity of Gating Functions

- Functional similarity of two gating functions g_i and g_i \bullet
 - Percentage of intersection

- Similarity of two gating clusters
 - Average similarity of gating functions in clusters

$$S(G_i, G_j) \triangleq \operatorname{AVG}_{x \in \mathbb{C}_i, y \in \mathbb{C}_j} S(g_x, g_y)$$

$$\begin{array}{c|c} \mathbb{C}_i & \mathbb{C}_j \\ g_1 & 0.8 \\ g_2 & 0.9 \end{array} g_3$$

 $g_i \vee g_j$

 $S(G_i, G_i) = 0.85$

1: Compute Similarity of Gating Functions

- AVG $S(g_x, g_y)$ vs. average loss of gating probability
 - High AVG $S(g_x, g_y)$ should imply less loss of gating probability
 - Acceptable correlation shown through experiment

2: Create a Similarity Graph

- Similarity graph: G(V, E, a, s)
 - Vertex: a cluster of latches
 - Edge: if merging two vertices is potentially possible
 - Edge weight s: similarity between clusters
 - Vertex weight a(i): sum of similarity at vertex i
 - Sort edges in descending order of similarity
 - Only add similarities one by one while $C_{load}(\mathbb{C}) \leq C_{max}$

3: Perform Clustering

- Measure of merit: value used to represent quality of a cluster
 - Consider both average gating probability and literal count of gating function

3: Perform Clustering

- While E≠Ø in similarity graph
 - Select vertex i having maximum vertex weight a(i)
 - Select vertex j having maximum edge weight by choosing edge with maximum similarity s(e_{ii})
 - If measure of merit improves and $C_{load}(\mathbb{C}_{i'})$ is smaller than C_{max} , merge i and j
 - Else, remove edge

4: Assessment of Clusters

- Synthesize a clock gating function
- Net saving =

 (power saving power consumption of extra gates)

 $P(G_i) \times$ (power consumption of pulser and latches)

 Pulser gating is performed <u>only on clusters</u> which have positive net saving

5: Pulser Insertion for Remaining Latches

- Create graph G(V,E)
 - V: a set of latches that are not pulser gated
 - E: a set of edges (each edge is between latches that can share a pulser), edge weight is Manhattan distance between two latches
- Find groups of latches that satisfy C_{max}

Pulser Gating Flow

- Experimental setup
 - 45-nm commercial technology
 - Test circuits from ISCAS, ITC, and OpenCores
 - Pulser gating synthesis was implemented in SIS
- Results compared with pulsed-latch circuits without pulser gating

- Synthesis results
 - # of pulsers increase to maintain high $P(G_i)$
 - Area increases by 11% due to extra gates

Name	# Gates	# Latches	# Pulsers	Pulser_Gating_Synthesis				
				∆ Pulsers	# Extra gates	% Gated latches	AVG P(G _i)	Runtime (min.)
s838	351	32	6	2	0	65.6	0.63	0.3
s1423	1191	74	15	1	24	4.1	0.04	1.3
s5378	1781	160	30	5	417	23.8	0.22	16.6
s9234	1293	125	22	7	276	28.0	0.23	6.8
b04	833	66	13	1	17	7.6	0.07	2.3
b07	431	44	8	1	31	20.5	0.18	0.3
b12	1395	119	21	7	317	31.1	0.29	3.1
i2c	1125	128	22	6	475	39.8	0.30	4.9
pci_ctrl	879	60	12	3	90	51.7	0.51	1.3
sasc	1058	116	21	5	179	30.2	0.26	2.5

• Power saving of **12% on average**

Combinational: 13% Pulsers: -20% Latches: -15%

- Test circuit pci_ctrl
 - 9 gated pulsers, 6 un-gated pulsers
 - Gated pulsers drive smaller
 # of latches (long distance between some latches with high similarity)

Summary

- Pulsed-latch
 - Retain the advantage of both flip-flop (simple timing model) and latch (fast and small)
 - External pulser: pulser and latches should be geographically close
- Pulser gating synthesis
 - When merging two gating functions, their "similarity" and "location of latches" have to be considered
- Experiments
 - Power savings of 12% compared to pulsed-latch circuits without gating