
On the Interplay of Loop Caching,
Code Compression, and Cache

Configuration

+ Also Affiliated with NSF Center for High-
Performance Reconfigurable Computing

Marisha Rawlins and Ann Gordon-Ross+

University of Florida
Department of Electrical and Computer Engineering

This work was supported by National Science
Foundation (NSF) grant CNS-0953447

Instruction Cache Optimization
• The instruction cache is a good candidate for optimization

– Large source of energy consumption
– Predictable spatial and temporal locality

2

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10

Critical Regions

Execution
time

Code size

Gordon-Ross ‘04

• Several optimizations exploit the 90-10 rule
– 90% of execution is spent in 10% of code known as critical

regions
– Optimizations include loop caching, cache tuning, and code

compression

Instruction Cache Optimizations

3

L1 Instruction Cache loop caching

cache tuning

code compression
code reordering

filter caching

loop caching

cache tuning

cache partitioning

Which technique should we apply?

trace caching

Can optimizations be combined?

+
Which optimization
should be applied

first?

How do optimizations interact?
Complement

Degrade

Obviate

Many instruction cache
optimizations exist

apply optimization 1 apply optimization 2

Increased
Savings

Instruction Cache Optimization –
Loop Caching

4

Microprocessor

Loop Cache

L1 Instruction Cache or
Main Memory

[0] lw r1, 100(r2)
[1] addi r3, r1, 1
[2] sw r3, 500(r2)
[3] addi r2, r2, 1
[4] sbb -4

• Operation
– Filled when a short backward branch is detected in

the instruction stream
– Provides the processor with instructions on the next

loop iteration

• Benefits
– Smaller, tagless device energy savings
– Miss-less device no performance penalty

• Loop cache operation must guarantee a 100% hit rate
– Loop cache operation invisible to user

• The loop cache achieves energy savings by storing loops in a
smaller device than the L1 cache

Cannot cache loops with taken branches

Adaptive Loop Cache (ALC)
• Dynamically caches loops containing branches (Rawlins/Gordon-Ross 10)

5

Microprocessor

Adaptive
Loop Cache

L1 Instruction Cache or
Main Memory

Instructions nv tnv

lw r1, 200(r2) 1 0

addi r3, r1, 1 1 0

sw r3, 500(r2) 1 0

bne r4, r3, 3 1 1

srl r4, r5, 10 1 0

or r6, r4, r1 1 0

addi r2, r2, 1 1 0

sbb -7 0 1

lw r1, 200(r2)

addi r3, r1, 1

sw r3, 500(r2)

bne r4, r3, 3

srl r4, r5, 10

or r6, r4, r1

addi r2, r2, 1

sbb -7

loop
branch

– Filled when a short backward branch is detected
in the instruction stream

– Valid bits are used to indicate the location of
the next instruction fetch and are critical for
maintaining a 100% hit rate

Energy savings
as high as 69%

No designer effort

Preloaded Loop Cache (PLC)
• Statically stores the most frequently

executed loops (Gordon-Ross/Cotterell/Vahid 02)

– Can cache loops containing branches and
subroutines

• Operation
– Application is profiled offline and critical

regions are stored in the loop cache
– PLC provides the instructions when a stored

critical region is executed
– Exit bits are used to indicate the location of

the next instruction fetch

• No runtime fill cycles
• But requires designer effort and not

appropriate for dynamic applications 6

Microprocessor

Preloaded
Loop Cache

L1 Instruction Cache or
Main Memory

Instruction Cache Optimization –
Cache Configuration (Tuning)

• Different applications have vastly different cache requirements
– Cache parameters that do not match an application’s behavior can waste

over 60% of energy (Gordon-Ross 05)
– Cache tuning determines appropriate cache parameters (cache

configuration) to meet optimization goals (e.g., lowest energy)
• Configure cache parameters: size, line size, associativity

7
Average Energy Savings from Cache Tuning > 40%

Inst 8 Inst 7 Inst 6 Inst 5 Inst 4 Inst 3 Inst 2 Inst 1

Cache configuration tunes the cache to the instruction stream

L1 Instruction Cache

2KB, direct mapped

L1 Instruction Cache

4KB, direct mapped

L1 Instruction Cache

4KB, 2-way

Instruction Cache Optimization –
Code Compression

• Code compression techniques were initially developed to
reduce the static code size in embedded systems

• Code compression is typically performed off-line while
decompression is performed during run-time
– Area savings in main memory and perhaps the level one cache,

depending on decompression location

• Since decompression done during runtime, decompression
overhead must be minimized
– Decompression overhead is defined as energy and performance

expended while decompressing instructions

8

Code Compression Architectures

9

• Decompression on Cache Refill (DCR)

• Decompression on Fetch (DF)

Microprocessor
(Uncompressed

Instructions)

Main Memory
(Compressed Instructions)

Decompression
Unit

L1 Cache
(Uncompressed

Instructions)

Microprocessor
(Uncompressed

Instructions)

Main Memory
(Compressed Instructions)

Decompression
Unit

L1 Cache
(Compressed
Instructions)

Less overhead, no L1 area savings

More overhead, but L1 area savings

Code Compression (Energy Savings)
• Previous work on code compression achieved energy savings as

high as 82% (Benini et al. 2001; Lekatsas 2000)

10

MicroprocessorMemory
Decomp.L1 Cache

• Decompression on Fetch (DF) architecture consumed lower energy
than the Decompression on Cache Refill (DCR) architecture
– Bit toggling and energy expended on busses were reduced
– The L1 cache capacity was effectively increased

decompression unit is on the critical path need low decompression overhead
8 instructions 12 instructions

DF

Combining Optimizations
• Studying the interaction of existing techniques reveals

the practicality of combining optimization techniques
– Combining certain techniques provides additional energy

savings but the combination process may be non-trivial (e.g.
circular dependencies for highly dependent techniques)

– In these cases, new design techniques must be developed to
maximize savings

– Less dependent techniques may be easier to combine but may
reveal little additional savings

– Some combined techniques may even degrade each other

11

Combining Cache Tuning and
Loop Caching

12

L1 Instruction Cache

2KB, direct mapped

L1 Instruction Cache

4KB, direct mapped

L1 Instruction Cache

4KB, 2-way

Inst
8

Inst
7

Inst
6

Inst
5

Inst
4

Inst
3

Inst
2

Inst
1

Microprocessor

Loop Cache

L1 Instruction Cache

Inst
8

Inst
7

Inst
6

Inst
5

Inst
4

??????

Inst
3

Inst
2

Inst
1

New Optimal L1 configuration??

L1 Cache Idle

Increase Energy Savings
Fetch from Smaller Loop Cache

Combining Code Compression,
Cache Tuning, and Loop Caching

13

Inst
8

Inst
7

Inst
6

Inst
5

Inst
4

Inst
3

Inst
2

Inst
1

Compressed Instructions

New Optimal L1 configuration??

L1 Cache
(Compressed
Instructions)

Decompression
Unit

Microprocessor
(Uncompressed

Instructions)

Loop Cache

Loop Cache stores Uncompressed loop instructions

Decompression overhead eliminated when loops are fetched from the loop cache

Reduces overall energy consumption

Contribution
• Combining optimization techniques with respect to additional

energy savings, desired designer effort, and dynamic flexibility
– Adaptive Loop Cache (ALC) – No designer effort, most flexible
– Preloaded Loop Cache (PLC) – Designer effort, less flexible but greater

savings (no fill cycles)

• Interaction of cache tuning, loop caching, and code compression
– Additional energy savings from combining loop caching and cache tuning
– Identify benchmark characteristics and situations where combining loop

caching and cache tuning are most effective
– Investigate the practicality of using a loop cache to reduce decompression

overhead
– Indentify side effects from combining loop caching, code compression, and

cache tuning

14

Loop Cache and Level One
Cache Tuning

15

Experimental Setup
• Modified SimpleScalar1 to implement the Adaptive Loop

Cache (ALC) and Preloaded Loop Cache (PLC)
• 31 benchmarks from the EEMBC2, Powerstone3, and

MiBench4 suites
• Energy model based on access and miss statistics,

(SimpleScalar) and energy values (CACTI5)
• Energy savings calculated with respect to our base system

(an 8kB, 4-way associative, 32 byte line size L1 cache6

with no loop cache)

16

1 (Burger/Austin/Bennet 96), 2(http://www.eembc.org/), 3(Lee/Arends/Moyer 98),
4(Guthaus/Ringenberg/Ernst/Austin/Mudge/Brown 01), 5(Shivakumar/Jouppi 01)

6(Zhang/Vahid/Najjar 00)

Experimental Setup
• Tunable cache parameters (based on 6, 7)

– L1 cache size: 2kB,4kB, and 8kB
– L1 cache line size: 16 bytes, 32 bytes, and 64 bytes
– L1 cache associativity: 1-, 2-, and 4-way associative
– Loop cache sizes: 4 – 256 entries

• Experiments
– Tuned the L1 cache with a fixed size ALC
– Tuned both the L1 cache the ALC
– Tuned the L1 cache with fixed size PLC

• For comparison purposes we reported
– Tuned ALC with a fixed L1 base cache
– Tuned the L1 cache in a system with no loop cache

17

ALC - Adaptive Loop Cache
PLC - Preloaded Loop
Cache

6(Zhang/Vahid/Najjar 00), 7(Rawlins/Gordon-Ross 10)

Energy Savings
Cache Tuning & Loop Caching Applied Individually

• In general, loop caching alone does not match cache tuning
alone

18

23% 46% 26%53% 59% 37%

ALC - Adaptive Loop Cache

Energy Savings
Combining a Fixed Sized ALC with L1 Cache Tuning

• Small average improvement in energy savings compared to
cache tuning alone

• L1 cache tuning dominates overall energy savings

19

15% Improvement

ALC - Adaptive Loop Cache

Energy Savings
Combining ALC Tuning with L1 Cache Tuning

• Small improvement in savings
• L1 cache tuning therefore obviates the need for ALC tuning

– Adding an appropriately sized ALC is sufficient
– Reduces design space exploration

• No need to try each ALC configuration with each L1 cache configuration

20

Up to 26% Improvement

ALC - Adaptive Loop Cache

Energy Savings
Combining a Fixed Sized PLC with L1 Cache Tuning

• PLC results in higher energy savings compared with the ALC
• Using a PLC can result in a different optimal L1 configuration

– PLC removes instructions from instruction stream
– Achieves area savings up to 33% for 14 benchmarks

21

Up to 27% Improvement 10% Average Improvement

ALC - Adaptive Loop Cache
PLC - Preloaded Loop
Cache

Code Compression, Loop
Caching, and Cache Tuning

22

Experimental Setup

• Decompression on Fetch architecture with Huffman
encoding

• 32 entry ALC; 64 entry PLC (based on 7)
• Decompression unit, Line Address Table, ALC, and PLC

implemented in SimpleScalar
• Branch targets were byte aligned for random access
• Energy model modified for decompression energy
• Measured performance (# cycles needed to complete

execution)

23
7(Rawlins/Gordon-Ross 10)

ALC - Adaptive Loop Cache
PLC - Preloaded Loop
Cache

– Powerstone and MiBench benchmarks contain few loops which iterate
several times

– EEMBC benchmarks contain several loops which iterate fewer times
than Powerstone/MiBench

• EEMBC benchmarks spend little time fetching uncompressed instructions
from the ALC before the decompression unit is invoked again

24

Energy Savings (ALC)
Combining Code Compression with L1 Cache Tuning

no savings

20% 19% Using the ALC to store
uncompressed
instructions

Microprocessor

Decomp.

L1 Cache

ALC

ALC - Adaptive Loop Cache

– Eliminates the decompression overhead (energy) which would have been
consumed while filling the ALC

25

Energy Savings (PLC)
Combining Code Compression with L1 Cache Tuning

Using the PLC to store
uncompressed
instructions

30% 30%

56% improvement
38% improvement

no savings

Additional 10%
energy savings

ALC - Adaptive Loop Cache
PLC - Preloaded Loop
Cache

– PLC smaller performance penalty than ALC
– Combining code compression and L1 cache tuning is possible when

loop caching eliminates decompression overhead
– In some cases, combining code compression and L1 cache tuning is

only possible using the PLC

Performance (ALC & PLC)
Combining Code Compression with L1 Cache Tuning

26

Average increase in execution time (decompression overhead):
1.7x – 4.7x

40% reduction using PLC

73% 2%

ALC - Adaptive Loop Cache
PLC - Preloaded Loop
Cache

• Storing compressed instructions in the L1 cache resulted in smaller optimal L1
configurations for 12 benchmarks

27

Area (ALC & PLC)
Combining Code Compression with L1 Cache Tuning

Original Optimal L1 Cache Size New Optimal L1 Cache Size Area Savings

8KB 2KB 50%

8KB 4KB 30%

4KB 2KB 20%

• For the remaining benchmarks the L1 cache configuration did not change
– Thus adding a loop cache increased the area of the system

• Some benchmarks achieved energy savings but not area savings

ALC - Adaptive Loop Cache
PLC - Preloaded Loop
Cache

Conclusions
• We investigated the effects of combining loop caching with

level one cache tuning
– In general, cache tuning dominates overall energy savings indicating

that cache tuning is sufficient for energy savings
– However, we observed that adding a loop cache to an optimal (lowest

energy) level one cache can increase energy savings by as much as 26%

• We investigated the possibility of using a loop cache to
minimize run-time decompression overhead and quantified the
effects of combining code compression with cache tuning
– Our results showed that a loop cache effectively reduces the

decompression overhead resulting in energy savings of up to 73%
– However, to fully exploit combining cache tuning, code compression,

and loop caching, a compression/decompression algorithm with a lower
overhead than the Huffman encoding technique is required

28

	Instruction Cache Optimization
	Instruction Cache Optimizations
	Instruction Cache Optimization – Loop Caching
	Adaptive Loop Cache (ALC)
	Preloaded Loop Cache (PLC)
	Instruction Cache Optimization – Cache Configuration (Tuning)
	Instruction Cache Optimization – Code Compression
	Code Compression Architectures
	Code Compression (Energy Savings)
	Combining Optimizations
	Combining Cache Tuning and Loop Caching
	Combining Code Compression, Cache Tuning, and Loop Caching
	Contribution
	Loop Cache and Level One Cache Tuning
	Experimental Setup
	Experimental Setup
	Energy Savings�Cache Tuning & Loop Caching Applied Individually�
	Energy Savings� Combining a Fixed Sized ALC with L1 Cache Tuning �
	Energy Savings� Combining ALC Tuning with L1 Cache Tuning �
	Energy Savings� Combining a Fixed Sized PLC with L1 Cache Tuning �
	Code Compression, Loop Caching, and Cache Tuning
	Experimental Setup�
	Energy Savings (ALC)� Combining Code Compression with L1 Cache Tuning �
	Energy Savings (PLC)� Combining Code Compression with L1 Cache Tuning �
	Performance (ALC & PLC)� Combining Code Compression with L1 Cache Tuning �
	Area (ALC & PLC)� Combining Code Compression with L1 Cache Tuning �
	Conclusions

