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In SSTA, criticality is a representative metric to 
gauge how important a given edge or path is in 
terms of timing

The criticality of a path is defined as the probability 
that the path becomes the critical path

The criticality of an edge is defined as the 
probability that the edge is on the critical path
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Criticality is used in timing/yield optimization

Gate sizing, buffer insertion, Vth assignment

Transistor sizing

Criticality is also very useful in testing

Timing critical paths (i.e., paths with high path 
criticality values) can be selected using SSTA

An ATPG tool takes these paths and generates test 
patterns sensitizing them

These patterns can be employed in performance 
testing, SDD testing, and speed-binning
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Run SSTA

Obtain the circuit slack Sc

Obtain the slack S(p1) of a given path p1

Compute
1( ( ) )cP S p S<

1 2 3min{ ( ), ( ), ( ),...}cS S p S p S p=

Xiong et al, Incremental criticality and yield gradients, DATE 2008
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The complement slack of a path is the minimum of all 
path slacks in the circuit excluding the path slack

Obtain the complement slack                from  

Compute

1 1( ( ) ( ))P S p S p<

1 2 3( ) min{ ( ), ( ),...}S p S p S p=

Xiong et al, Incremental criticality and yield gradients, DATE 2008

1( )S p 1( ), cS p S

Lots of information is captured by 
a too simple linear form
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Partition the set of all paths in the circuit into m groups

Compute the minimum path slack of each group

Path criticality of p1 can be written as
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1. Various ways to formulate path criticality
2. Smart formulation considering non-idealities of 

SSTA can reduce errors
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Path criticality computation is reduced to evaluating 
the multivariate normal CDF
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Edge criticality computation is also reduced to the 
same problem An edge

criticalityA path
criticality
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Previous approaches to evaluate the CDF

Numerical Integration (e.g.,mvncdf in matlab) 

Accurate but extremely slow

Monte Carlo sampling (slow)

Using the max operation provided by SSTA

Very fast but poor accuracy

We propose a novel, analytic conditioning operation

1000x faster than Monte Carlo sampling at the 
same accuracy

2~3x accurate at the cost of 3~4x runtime 
compared to max operation
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Error analysis of normal approximation in max operation 
[D. Sinha et. al. TCAD 2007]

The same analysis was done for conditioning operation

More than 2x less error

Error is much less for positively correlated timing 
quantities
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Randomly generated 10 timing quantities represented 
in the canonical form with 21 global sources of 
variation

Mean: within a range of [1.0, 3.0]

Std.: from 10% to 20% of the mean

Sensitivity values: 

Case 1) chosen within a range of [-1.0,1.0]  and then 
normalized in order to meet the std. value

Case 2) chosen within a range of [0,1.0] and normalized

Compute criticality of randomly chosen one out of the 
10 timing quantities
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0.1ρ =Case 1
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0.82ρ =Case 2
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SSTA algorithm used: [Visweswariah DAC 2004]

Refactoring is employed: [Chung et al ICCAD 2009]

Capture topological (structural) correlation

Improve the accuracy of the arrival times

Spatial correlation model: A quad tree with 3 levels

4%, 5%, and 6% variation at 1st, 2nd, and 3rd level

21 global sources of variation

5% random independent variation 
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If you develop a statistical algorithm on top of SSTA, 
and our conditioning operation is employed to 
compute a certain joint probability,

Compared to the max operation

The quality of results can be improved 
significantly

The algorithm can become more stable

Compared to Monte Carlo sampling

Significant speed-up can be achieved

This is demonstrated in path criticality computation
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Path criticality values are difficult to be computed 
accurately

If you use the max operation, the accuracy change 
depending on the number of near-critical paths

The combination of the conditioning operation and 
refactoring 

allow us to compute it as accurate as Monte Carlo 
simulation unless your design is like c6288

is important when your design has many near-
critical paths
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