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Introduction Motivation

The heat is on!
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Figure: Rise in on-chip power density. [Source: Intel]

@ On-chip power density is rising exponentially
@ Direct impact: high on-chip temperatures

@ Thermal management now a first-class design problem

Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 3/27




Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient

(ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient

@ Need to completement them with software-based run-time techniques

Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan

4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:

e Dynamic Voltage Frequency Scaling (DVFS)

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:

e Dynamic Voltage Frequency Scaling (DVFS)

o Clock-gating

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan

4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:

e Dynamic Voltage Frequency Scaling (DVFS)
o Clock-gating

e Task migration

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan

4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:
e Dynamic Voltage Frequency Scaling (DVFS)
o Clock-gating
e Task migration

e Architecture specific throttling

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan

4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:
e Dynamic Voltage Frequency Scaling (DVFS)
o Clock-gating
e Task migration

e Architecture specific throttling

I-cache toggling

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:
e Dynamic Voltage Frequency Scaling (DVFS)
o Clock-gating
e Task migration

e Architecture specific throttling

I-cache toggling

P.Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 4127



Introduction Motivation

Dynamic Thermal Management (DTM)

@ Research shows that hardware cooling solutions are not sufficient
@ Need to completement them with software-based run-time techniques

@ Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:
e Dynamic Voltage Frequency Scaling (DVFS)
o Clock-gating
e Task migration
e Architecture specific throttling
e |-cache toggling

@ But, when do we trigger these controls?
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Trigerring DTM

@ Natural choice: Read thermal sensor, trigger DTM if necessary
@ Responding to sensor readings is reactive in nature

@ Existing research confirms the intuitive idea: “Predictive trigerring greatly

out-performs naive reactive trigerring”

@ What are the requirements of a good predictive trigger?
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Introduction Motivation

Requirements of predictive triggers

@ For false positives, we would have performance loss. For false negatives we can have

thermal emergency. Thus, a basic requirement is accuracy

@ Prediction is during run-time. Hence, on-chip resources must be devoted. Thus,
computational efficiency is highly desirable

o If prediction engine is modelled at run-time, then we can have errors due to (a) VLSI
process variations, (b) thermal modelling errors. Thus, run-time adaptability is

required, if these errors are indeed significant
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Different thermal triggers

Qualitative Trade-Off Space

Let us try and qualitatively compare existing techniques to predict on-chip temperatures.

The different classes are
@ Design-time analytical models
@ Software simulators
© Model predictive control

@ Workload predictive triggers

@ Hardware simulators
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Qualitative comparison of thermal triggers

Comparison table

Predictive technique ‘ Accuracy ‘ Efficiency | Adaptability
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Neural-Network-Based Thermal Simulator Compact thermal model

Basics of heat transfer

@ Heat transfer represented using the compact thermal model

(@ (b)

@ Temperature given by the differential equation

ar

Sy
GT(t) + Cgr

(t)

@ The above is a linear time invariant LTI system that can be expressed as

T(tn+1) = AT[tn) + BP(tn)
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Neural-Network-Based Thermal Simulator Thermal simulation with NNs

Neural-Network representation

@ Alinear neural network mimics the behavior of a system which transforms a vector

of inputs x to a vector of outputsy = f(x) =wx +b

(ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 12/27



Neural-Network-Based Thermal Simulator Thermal simulation with NNs

Neural-Network representation

@ Alinear neural network mimics the behavior of a system which transforms a vector

of inputs x to a vector of outputsy = f(x) =wx +b

@ The thermal LTI system can be simulated with a neural network (NN)

A, B

Current Future

—

Temperatures Sensor
Ui Temperatures
T(t+At)
Power
Numbers
P

@ The matrices A and B can be learnt by using off-line measurements or design

models
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Advantages of Neural-Network-Based Thermal Simulator

@ Implementation
Linear NN requires only two-quadrant multipliers and summers. Both can be

implemented natively using analog CMOS circuits
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Advantages of Neural-Network-Based Thermal Simulator

@ Implementation
Linear NN requires only two-quadrant multipliers and summers. Both can be

implemented natively using analog CMOS circuits

@ Design overhead
Implementing a linear NN requires only tens of hundreds of transistors - a negligible

fraction of the total transistor count

@ Computation speed
An iteration of the LTI model takes only a few gate delays - negligible compared to

any software implementation
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Generalized NN configuration

@ Ideally we should have current temperature of all cells of the compact model
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Generalized NN configuration

@ Ideally we should have current temperature of all cells of the compact model
@ But only few thermal sensors are fabricated on-chip in an arbitrary layout

@ We need to thus find reduced versions of matrices A and B such that
Ts(tn+1) = A'rTs (th + BrP(tn)

where T is the temperature of the points covered by sensors
@ This requires us to perform model order reduction (MOR)
@ Forlinear NN, MOR is performed automatically when training with only T

@ Thus, independent of the number or layout of sensors the NN can be trained and

then simulated
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Run-time Adaptable Neural Network

@ So far, we have discussed training the NN at design time
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Run-time Adaptable Neural Network

@ So far, we have discussed training the NN at design time

@ NNs can be refined during run-time using backpropagation learning methods
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Practical extensions to NN simulator Run-time Adaptability

Run-time Adaptable Neural Network

@ So far, we have discussed training the NN at design time

@ NNs can be refined during run-time using backpropagation learning methods

Awyj  Awy; + (Y7 —Yi)y;

Wy — Wy + AWij

where w are weight terms, y* is the correct output and y is the computed output

@ Whatis the hardware implications for on-line refinement?
1. Every weight term must be programmably stored in say b bits

2. Run-time learning not as accurate as off-line learning because of quantization of

weight terms to b bits
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Benchmarking system

Experimental Results

Target system

@ 8-core Sun UltraSPARC T1 (Niagara)
chip with accurate floorplan

@ Accurate thermal properties of the chip

derived by an earlier study
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@ Accurate power numbers derived by

benchmark applications running on

o [ [ o
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Experimental Results Accuracy

Accuracy of NN simulator

@ First experiment to quantify the

accuracy

@ Does the NN faithfully represent the

thermal properties?
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Experimental Results Accuracy

Accuracy of NN simulator

@ First experiment to quantify the
W | core ore | Corefi] core
a CC u ra Cy L2 Cache L2 Cache
12Tag | | L2Tag
@ Does the NN faithfully represent the ;é# ml B coor W | |m F’i”
thermal properties? ome | | me
L2 Cache L2 Cache
core e | col| coe
@ Does the sensor layout affect the
results? We consider three layouts:
Core Core Core Core
Reg (ﬁgure on tOp), L2 Cache L2 Cache
L2Tag | | L2Tag
HS (figure on bottom), and s ml B | P" =
Rand (randomly generated layouts) o b
L2 Cache l L2 Cache
Core Core Core Core
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Experimental s Accuracy

Accuracy of NN simulator - Results
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@ We plot the results for different values of b - the number of bits in the weight

representation
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@ We plot the results for different values of b - the number of bits in the weight

representation
@ Clearly, as b increases accuracy increases, for all sensor layouts

@ Low errors are noted for all configurations (j=1.5K for b = 7)
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Adapting to VLSI process variations

@ Temperature depends on power, which depends on current through the transistor
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Experimental Results Run-time adaptability

Adapting to VLSI process variations

@ Temperature depends on power, which depends on current through the transistor
o Leakage current is becoming an increasingly large fraction of the total current.
Further, at higher temperatures leakge current increases exponentially

@ Unfortunately, leakge current is highly sensitive to process variations
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Figure: Leakage current variation for the 180 nm node, [Source: DAC 2003]
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Adapting to VLSI process variations - Results

@ So how does this process variation translate to temperature errors?
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@ So how does this process variation translate to temperature errors?

@ From our experiments, the error can be as high as 12K!
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Experimental s Run-time adaptability

Adapting to VLSI process variations - Results

@ So how does this process variation translate to temperature errors?
@ From our experiments, the error can be as high as 12K!

@ However, we are able to greatly reduce this with on-chip refinement
Reg HS Rand

Maximum Error in Temeprature (in K)
(] o ©

Maximum Variation of power (in multiples)
[ Off-chip Learning On-chip with refinement M On-chip without refinement
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@ So how does this process variation translate to temperature errors?
@ From our experiments, the error can be as high as 12K!

@ However, we are able to greatly reduce this with on-chip refinement
Reg HS Rand

Maximum Error in Temeprature (in K)
(] o ©

Maximum Variation of power (in multiples)
[ Off-chip Learning On-chip with refinement M On-chip without refinement

@ The good performance of on-chip refinement holds across sensor layout

configuration
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Experimental Results Run-time adaptability

Adapting to thermal modelling errors

@ Obtaining thermal model parameters is difficult. Depends on packaging, contact

between chip and heat sink, ambient temperature, etc...
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Experimental Results Run-time adaptability

Adapting to thermal modelling errors

@ Obtaining thermal model parameters is difficult. Depends on packaging, contact

between chip and heat sink, ambient temperature, etc...

@ One particular parameter subject to error is conductance to environment denoted as

Geny - the conductive path to the ambient
@ We did not find any study specifically quantifying the variation in Gen,

@ We varied it from +100% to -80% and noted the errors
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Experimental s Run-time adaptability

Adapting to thermal modelling errors - Results

@ From our results, fortunately, the errors in G, do not translate to very large errors

in temperature (maximum is under 5K)
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Experimental Results Run-time adaptability

Adapting to thermal modelling errors - Results

@ From our results, fortunately, the errors in Gy, do not translate to very large errors

in temperature (maximum is under 5K)

@ However, with run-time refinement NNs can nullify even these errors

Reg HS Rand

NoWw oA OO

II....lII |I|._.||I II|...l|I
IR RR R AN e pnnnnnl

100 80 60 40 20 -20 -40 -60 -80 100 80 60 40 20 -20 -40 -60 -80 100 80 60 40 20 -20 -40 -60 -80
Percentage Error in Conductance

Maximum Error in Temperature (in K)

[ Off-chip learning On-chip with refinement W On-chip without refinement

@ Again, refinement works well across sensor layout configurations
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Conclusions

Conclusions and further work

@ Run-time thermal management has become a necessity in today’s systems
@ We compared existing methods of predicting run-time behaviour

@ Hardware-based neural network simulators qualitatively out-perform others

We showed how NN simulators can be used with arbitrary sensor layouts

(4]

We showed that process variations can lead to significant errors in computed
temperature (up to 12 K)
@ We showed that with run-time refinement, with negligible overhead, NN simulators

can adapt to nullify such errors
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