Enabling Quality-of-Service in Nanophotonic Network-on-Chip

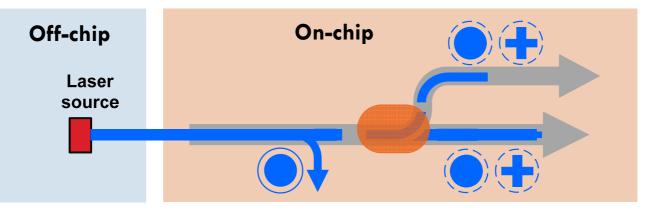
PENNSTATE

Jin Ouyang and Yuan Xie

Microsystems Design Laboratory (MDL) Dept. Computer Science & Engineering Pennsylvania State University

Outline

Background and Motivation


Baseline Optical NoC Architecture

Quality-of-Service Support for Optical NoC

- Principles of frame-based arbitration
- Implementing frame-based scheduling <u>optically</u>
- Optimization: Early frame-switching
- Experiment and Conclusion

On-chip optical interconnects

Components of on-chip optical interconnects:

- External laser source: provides laser power.
- On-chip waveguides: carries and confines the light beam
- **Micro-rings**:
 - Out-of-resonance: let light pass by
 - In resonance: divert light from the waveguide Mode
 - Modulation and detection (destructive)
- Splitter: broadcast

 On
 On
 On

 Off
 (not lit)
 (lit)

 Modulator
 Image: Compared and the second an

Motivation

- Various optical NoCs proposed, leveraging the power-efficiency of optical interconnects.
 - Direct networks: Shacham HOTI '07, NOCS'07; Gu CODES '08; Mo ISVLSI '10
 - Indirect networks: Gu DATE '09
 - Token-rings: Vantrease ISCA '08, MICRO '09; Pan MICRO '09; Zhang DAC '10
 - Bus: Kirman MICRO '06
- □ However, quality-of-service for optical on-chip network is absent.
- In this paper, we propose a simple and effective mechanism to provide QoS for optical NoC, leveraging optical frame-based scheduling.

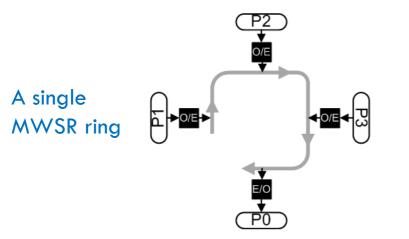
Outline

Background and Motivation

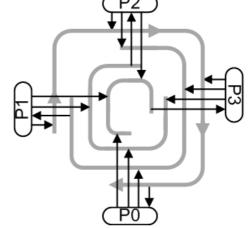
Baseline Optical NoC Architecture

Quality-of-Service Support for Optical NoC

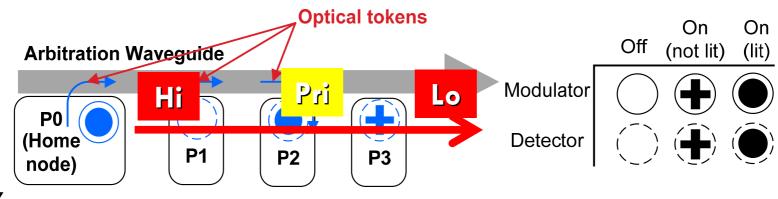
- Principles of frame-based arbitration
- Implementing frame-based scheduling <u>optically</u>
- Optimization: Early frame-switching
- Experiment and Conclusion


Baseline Optical NoC Architecture

- Corona *†
 - Optical all-to-all crossbar, formed by multiple token-rings
 - For an N-node network, there are N token rings
- Features:
 - Efficient packet switching with low latency, area, and power overheads.
 - \checkmark Efficient arbitration based on optical tokens
 - Poor fairness (upstream nodes always have higher priorities to obtain tokens).


* Vantrease, D. et al. "Corona: System Implications of Emerging Nanophotonic Technology", ISCA '08
† Vantrease, D. et al. "Light speed arbitration and flow control for nanophotonic interconnects", MICRO '09
6

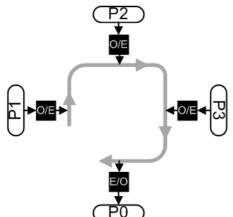
Multiple-Write Single-Read (MWSR) Rings


Each token-ring has <u>multiple sources</u> but a <u>single destination</u>, called the <u>home node</u>.

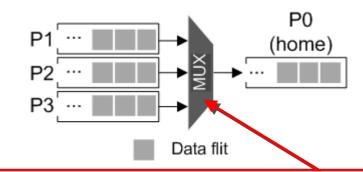
Basic optical token arbitration

Outline

Background and Motivation


Baseline Optical NoC Architecture

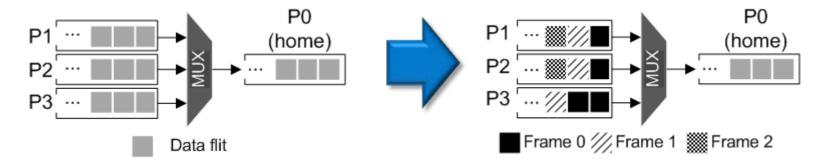
Quality-of-Service Support for Optical NoC


- Principles of frame-based arbitration
- Implementing frame-based scheduling <u>optically</u>
- Optimization: Early frame-switching
- Experiment and Conclusion

Frame-Based Scheduling

- Frame-based scheduling
 - Simple and effective method to enable quality-of-service
 - Suitable for on-chip networks (GSF, ISCA '08; PVC, MICRO '09)
- □ Abstraction of a single MWSR ring

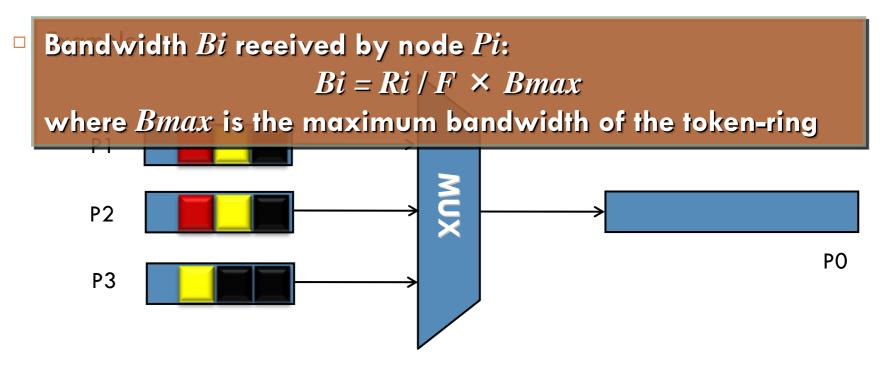
The multiplexer performs flit scheduling, dictating latency and bandwidth of each source.


With optical tokens, there is a strict ordering of priorities among P1, P2, P3 (P1 > P2 > P3).

Frame-based scheduling (con't)

- With frame-based scheduling, the queued flits are grouped into the so-called "frames".
 - A frame has a fixed size F flits
 - **\square** A share assigned to each source node Pi Ri flits

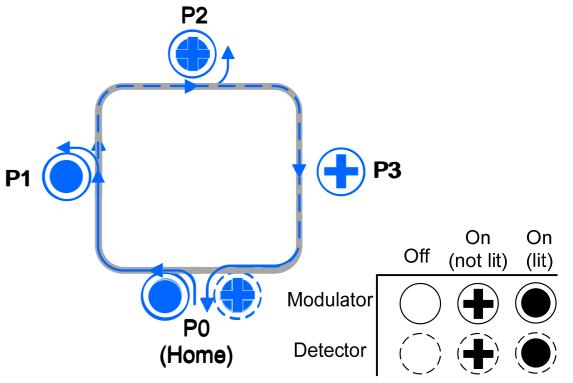
$$\sum_{Pi} Ri \le F$$


 \square Example: (assuming F=4, R1=1, R2=1, R3=2)

Frame-based scheduling (con't)

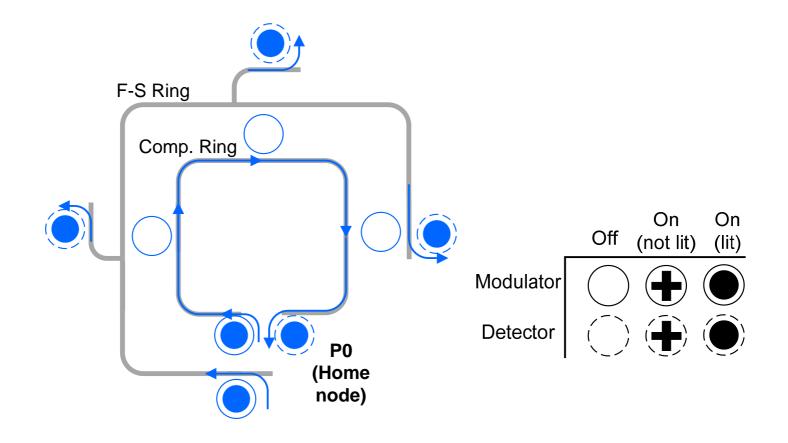
Flits are serviced in the increasing order of frame number

- Frame-based scheduling does not maintain any ordering inside a frame
- However, with optical tokens, there is a strict ordering among flits from P1, P2, P3.



How do we enforce frame-based scheduling in the optical token ring?

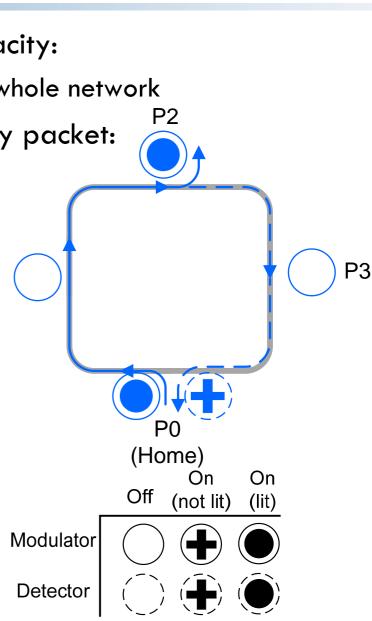
- Two key steps:
- 1. Mark the flits in the injection queue with different frame numbers (Easy)
 - Every source node maintains 2 local counters: *IFi* and *Ci*.
 - □ *IFi*: the frame number used to mark an incoming flit.
 - □ *Ci*: the remaining credits in frame *IFi*.
- 2. Request to send a flit only if frame-based ordering is not violated (Hard)
 - The oldest non-empty frame in the network (the <u>head frame</u>, or <u>HF</u> in short)
 - \square Request to send a flit only if it belongs to HF.
 - Every source node only knows <u>the head frame of itself</u>.
 - Need to synchronize HFs across the network.


The Completion Ring

- □ A ring carrying a continuous laser sourced from the home node
 - Every source node has a micro-ring on this ring, originally all micro-rings are turned on.
 - The home node has a photo detector at the end of this ring.
 - When a source node finds its local HF is empty, it turns off its micro-ring.
 - 1. The completion ring.
 - 2. Initially, all micro-rings are on.
 - 3. P1 and P3 finishe HF, turns of their micro-rings
 - 4. P2 also finishes, turns off its micro-ring. Now the home node detects light from the completion ring.

The Frame-Switching Ring

- □ A broadcast ring to signal incrementing the head frame number
- Once the home node detects light on the completion ring, it broadcasts frame-switching signal on this ring.



Optimization: Early Frame-Switching

- □ The risk of under-utilizing network capacity:
 - An inactive source node can block the whole network

P1

- □ For example, P2 does not generate any packet:
 - P1, P3 are starved
- Addressing this problem:
 Force <u>early frame-switching</u>, even when the frame is not drained
 Speculate that a source node will continue to be idle if it has been idle for <u>L</u> cycles.

Outline

Background and Motivation

Baseline Optical NoC Architecture

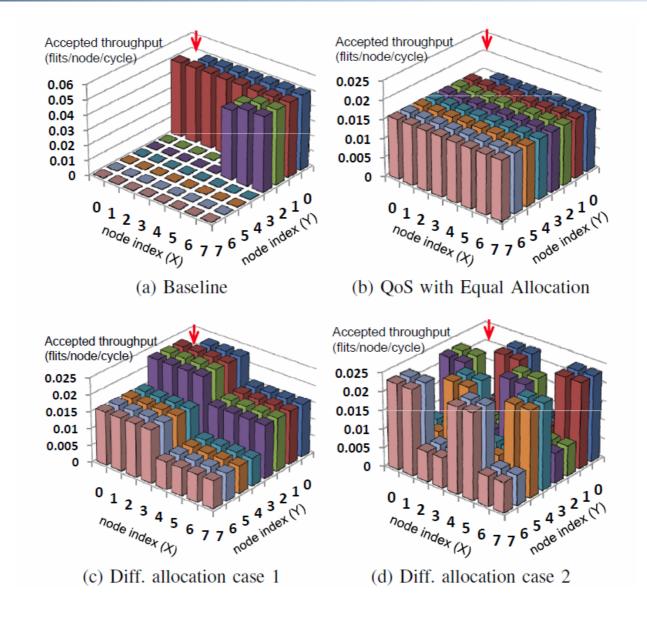
Quality-of-Service Support for Optical NoC

- Principles of frame-based arbitration
- Implementing frame-based scheduling <u>optically</u>
- Optimization: Early frame-switching
- Experiment and Conclusion

Experiment

Baseline architecture

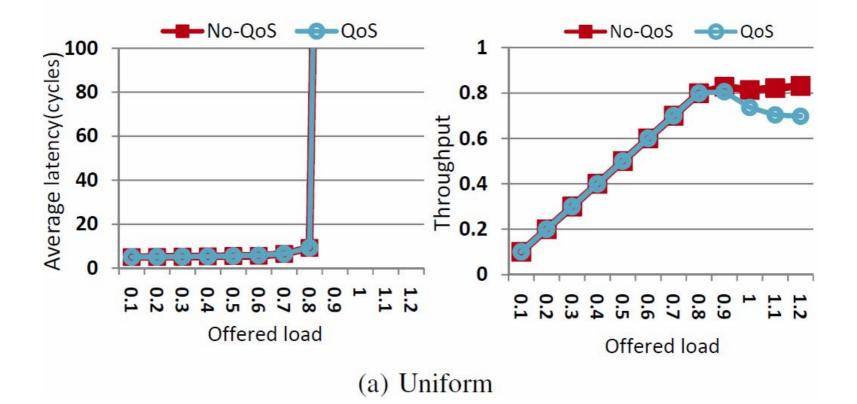
- 64-node Corona
- Token-slot arbitration
- 10GHz, 256-bit wide optical channel
- ightarrow 20TB/s bi-section bandwidth
- QoS enhanced optical NoC
 - Implement frame-based scheduling
 - Default frame size F: 128 flits
 - Empirically set L to 2 cycles.
- Cycle-accurate simulator modeling both networks
 - 8X8 network
 - Synthetic traffic patterns
 - Collect results when network statistics are stable


Hardware and Power Budget

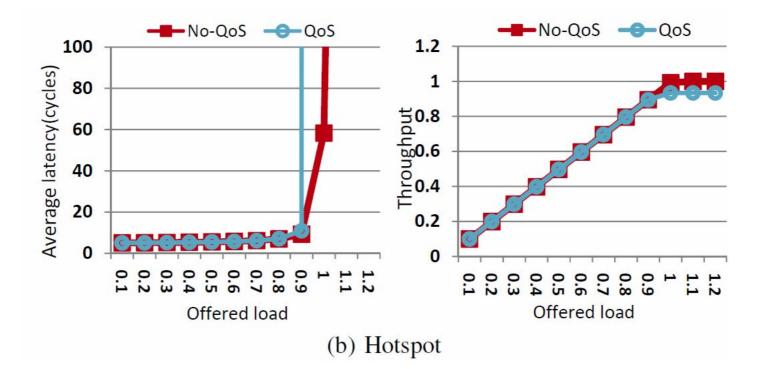
	Corona		QoS-Corona	
	Waveguides	Micro-rings	Waveguides	Micro-rings
Data MWSR rings	256	1024K	256	1024K
Arbitration ring	1	4K	1	4K
Comp. ring	0	0	1	4K
Frame-switch. ring	0	0	1	4K
<u>Total</u>	100%	100%	108%	108%
External laser	13.2W		14.1W	
Ring heating	26W		26.2W	
Ring modulation	50fJ		50fJ	

Hardware and Power Budaet table*

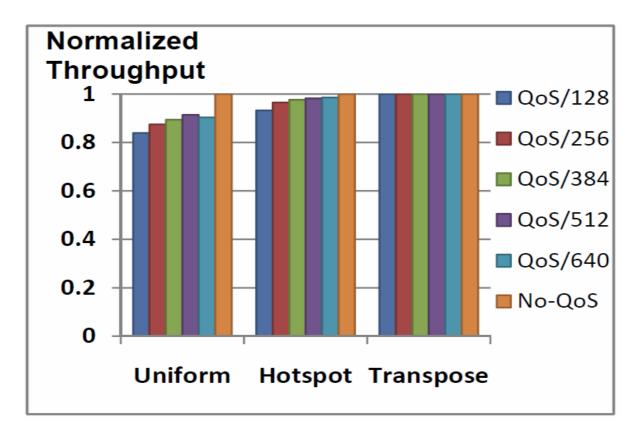
* Power consumptions are extracted from the paper by Zhang et al, DAC '10 for 22nm technology.


Quality-of-Service Results

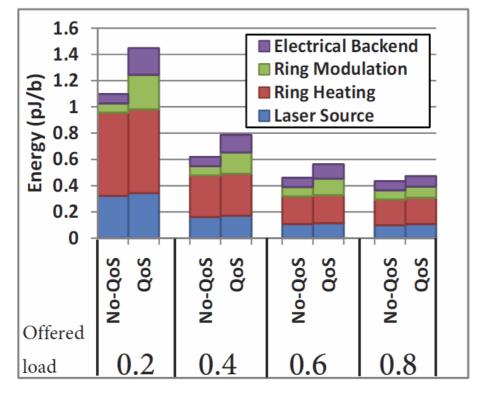
19


Performance overhead – Uniform

Maximum throughput 17% lower than baseline


Performance overhead – Hotspot

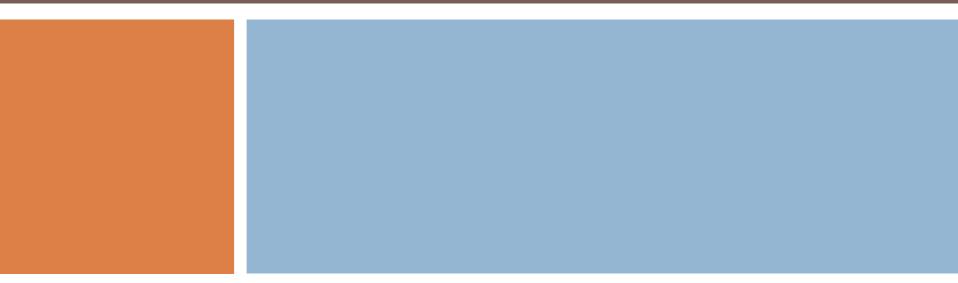
Maximum throughput 7% lower than baseline


Performance overhead against frame size

- \square Frame size increases \rightarrow Throughput increases
- When F=512 flits, 10% and 2% overheads for uniform and hotspot respectively.

Power overhead

- Power overhead mainly comes from dynamic power
 - Due to frame-switching overheads
- When load increases, dynamic overhead decreases
 - Frame-switching overhead is amortized
 - 32% for a rate of 0.2, 8% for a rate of 0.8



23

Conclusion

- □ A QoS-enabled optical NoC with frame-based scheduling is presented.
- □ Effective in providing strong bandwidth allocation
- Low performance overhead
 - 17% with 128-flit frame
 - 10% with 512-flit frame
- Power overhead depends on loads
 - Favors heavily loaded network
 - Future work: adaptively adjust early frame-switching frequency to further reduce power overhead, especially for low loads.

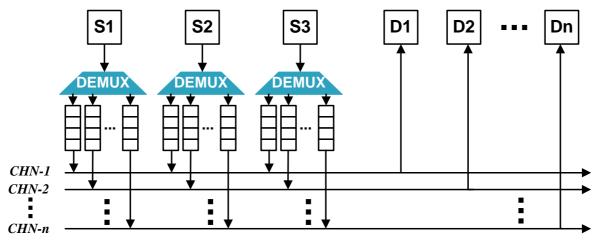
Thank You! Questions?

Notations

- Recap:
 - F: frame size in flits
 - **Ri**: the share of a frame assigned to node *Pi*.
- New notations
 - HF: the current lowest number frame in the network.
 - **IFi:** the frame being used by node *Pi* to inject flits.
 - Ci: the remaining share of node Pi in IFi.
 - L: the node idle time to trigger <u>early frame switching</u>.

Implementing Frame-Based Scheduling in Optical NoC

- Each source node Pi maintains two counters
 - IFi: Current injection frame number
 - **Ci:** Remaining credits in the current injection frame
- \Box Each source node Pi runs 2 procedures:


 <u>1. Group flits into frames:</u>
 On the generation of a flit: If Ci = 0 then IFi = IFi + 1; Ci = Ri; end if; Mark the flit with IFi; Ci = Ci - 1; Put the flit in the injection queue

<u>2. Injection admission:</u>

If there is a flit at the head of the injection queue && the flit's frame number is equal to HF then Request for optical tokens in order to send this flit.

Put it together – Multiple token rings

- □ The discussion so far only considers a single token ring.
- □ For multiple token rings, virtual output queue (VOQ) is used
 - The source node has multiple injection queues, each for a different destination.

Each ring runs an independent copy of frame-based scheduling algorithm.
 No interaction among channels.