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On-chip optical interconnects

Components of on-chip optical interconnects:
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Motivation

Various optical NoCs proposed, leveraging the power-efficiency of
optical interconnects.
Direct networks: Shacham HOTI 07, NOCS’07; Gu CODES '08; Mo ISVLSI’10
Indirect networks: Gu DATE 09

Token-rings: Vantrease ISCA '08, MICRO ’'09; Pan MICRO ’09; Zhang
DAC’10

Bus: Kirman MICRO 06

However, quality-of-service for optical on-chip network is absent.

In this paper, we propose a simple and effective mechanism to
provide QoS for optical NoC, leveraging optical frame-based
scheduling.
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Baseline Optical NoC Architecture

Corona *f

Optical all-to-all crossbar, formed by multiple token-rings

For an N-node network, there are N token rings

Features:

Efficient packet switching with low latency, areaq, and power
overheads.

Efficient arbitration based on optical tokens

% Poor fairness (upstream nodes always have higher priorities to
obtain tokens).

*Vantrease, D. et al. “Corona: System Implications of Emerging Nanophotonic
Technology”, ISCA 08

t Vantrease, D. et al. “Light speed arbitration and flow control for nanophotonic
interconnects”, MICRO 09
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Multiple-Write Single-Read (MWSR) Rings

=1 Each token-ring has multiple sources but a single destination,
called the home node.
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Frame-Based Scheduling

1 Frame-based scheduling
Simple and effective method to enable quality-of-service
Suitable for on-chip networks (GSF, ISCA '08; PVYC, MICRO ’09)

71 Abstraction of a single MWSR ring
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With optical tokens, there is a strict
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Frame-based scheduling (con’t)

With frame-based scheduling, the queued flits are grouped into

the so-called “frames”.

A frame has a fixed size — F flits

A share assigned to each source node Pi — RI flits

Y Ri<F
Pi

Example: (assuming F=4, R1=1, R2=1, R3=2)
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Frame-based scheduling (con’t)

1 Flits are serviced in the increasing order of frame number

o1 Frame-based scheduling does not maintain any ordering inside a frame

o1 However, with optical tokens, there is a strict ordering among flits from P1,
P2, P3.

& Bandwidth Bi'received by node Pi:
BISRI/E X Bmax

where Binaxis the maximum bandwidth of the token-ring

A4

11



How do we enforce frame-based scheduling in the optical

token ring?

Two key steps:

1. Mark the flits in the injection queue with different frame numbers
(Easy)

Every source node maintains 2 local counters: IFi and Ci.

IFi: the frame number used to mark an incoming flit.

Ci: the remaining credits in frame IFI.

2. Request to send a flit only if frame-based ordering is not violated
(Hard)

The oldest non-empty frame in the network (the head frame, or HE in short)

Request to send a flit only if it belongs to HF.

Every source node only knows the head frame of itself.

Need to synchronize HFs across the network.
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The Completion Ring

=1 A ring carrying a continuous laser sourced from the home node

o1 Every source node has a micro-ring on this ring, originally all micro-rings
are turned on.

o1 The home node has a photo detector at the end of this ring.

1 When a source node finds its local HF is empty, it turns off its micro-ring.
P2

1% e complefioniring:

2. nitially, all micro=rings
are on.

. Pl and P3 finishe HE,
turns of their micro-rings @ P3
P2} alsor finishes, turns ofif:

its-micro-ring. Now: the Off (nootnlit) 8,3
home node detectsilight

from the completioniring: Modulator O @ @

- /’_\ —~
(Home) Detector | | /) (\+/) (‘/)

13



The Frame-Switching Ring

A broadcast ring to signal incrementing the head frame number

Once the home node detects light on the completion ring, it
broadcasts frame-switching signal on this ring.
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Optimization: Early Frame-Switching

The risk of under-utilizing network capacity:

An inactive source node can block the whole network

For example, P2 does not generate any packet:

)

P1, P3 are starved

Addressing this problem:

Force early frame-switching, even

when the frame is not drained
Speculate that a source node will
continue to be idle if it has been idle

for L cycles.
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Experiment

Baseline architecture
64-node Corona

Token-slot arbitration
10GHz, 256-bit wide optical channel
—> 20TB/s bi-section bandwidth

QoS enhanced optical NoC
Implement frame-based scheduling
Default frame size F: 128 flits
Empirically set L to 2 cycles.
Cycle-accurate simulator modeling both networks
8X8 network
Synthetic traffic patterns

Collect results when network statistics are stable
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Hardware and Power Budget

Hardware and Power Budget table™

Corona QoS-Corona

Waveguides | Micro-rings | Waveguides | Micro-rings
Data MWSR rings 256 1024K 256 1024K
Arbitration ring 1 4K 1 4K
Comp. ring 0 0 1 4K
Frame-switch. ring 0 0 1 4K
Total 100% 100% 108% 108%
External laser 13.2W 14.1W
Ring heating 26W 26.2W
Ring modulation 50fJ 501J

* Power consumptions are extracted from the paper by Zhang et al,
DAC 10 for 22nm technology.
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Quality-of-Service Results
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Performance overhead — Uniform

Maximum throughput 17% lower than baseline
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Performance overhead — Hotspot

7 Maximum throughput 7% lower than baseline
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Performance overhead against frame size

o Frame size increases = Throughput increases

7 When F=512 flits, 10% and 2% overheads for uniform and
hotspot respectively.

Normalized
Throughput
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0 -
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Power overhead

1 Power overhead mainly comes from dynamic power
Due to frame-switching overheads
1 When load increases, dynamic overhead decreases

Frame-switching overhead is amortized

32% for a rate of 0.2, 8% for a rate of 0.8
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Conclusion

A QoS-enabled optical NoC with frame-based scheduling is presented.

Effective in providing strong bandwidth allocation

Low performance overhead
17% with 128-flit frame
10% with 512-flit frame

Power overhead depends on loads
Favors heavily loaded network

Future work: adaptively adjust early frame-switching frequency to further
reduce power overhead, especially for low load:s.
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Notations

Recap:
F: frame size in flits

Ri: the share of a frame assigned to node PI.

New notations

HF: the current lowest number frame in the network.

|Fi: the frame being used by node Pi to inject flits.
Cli: the remaining share of node P1 in IFI.

L: the node idle time to trigger early frame switching.
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Implementing Frame-Based Scheduling in Optical NoC

EEE——
Each source node Pl maintains two counters
IFi: Current injection frame number
Ci: Remaining credits in the current injection frame
Each source node Pi runs 2 procedures:

1. Group flits into frames:
On the generation of a flit:

If Ci =0 then
IFi =1Fi + 1;
Ci= RI,

end if;

Mark the flit with IFi; Ci = Ci - 1;
Put the flit in the injection queue

2. Injection admission:
If there is a flit at the head of the injection queue
&& the flit’s frame number is equal to HF then
Request for optical tokens in order to send this flit.
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Put it together — Multiple token rings

The discussion so far only considers a single token ring.
For multiple token rings, virtual output queue (VOQ) is used
The source node has multiple injection queues, each for a different

destination.

S1 S2 S3 D1 D2| === |Dn

A A A
CHN-1 >
CHN-2 v A v >
CHN-n = v v v . >

Each ring runs an independent copy of frame-based scheduling algorithm.

No interaction among channels.
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