Power-efficient Tree-based Multicast Support for Networks-on-Chip

Wenmin Hu¹,
Zhonghai Lu², Axel Jantsch², Hengzhu Liu¹
¹National University of Defense Technology, P.R China
²Royal Institute of Technology, Sweden

- Motivation
- * Multicast scheme
- * Implementation
- * Path search Algorithm
- * Evaluation
- * Conclusion

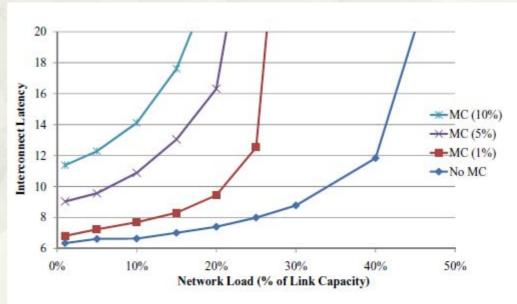
Need for multicast

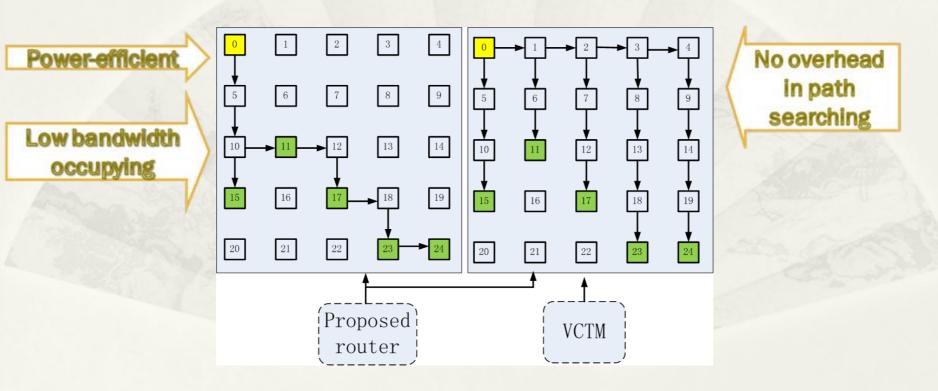
- Parallel algorithm:
 - * parallel search, parallel graph.etc
- Single program multiple-data programming model
- Data-parallel programming mode:
 - * Replication, barrier synchronization
- * Distributed shared-memory system:
 - * Coherence Protocols

Insufficient of unicast router

- Implement multicast by multiple unicast
 - long startup latency for message
 - * Redundantly in bandwidth occupying

Figure 1 is referred from [Jerger ISCA08], shows that even low amount of multicast traffic can leads Very poor performance




Figure 1. Performance of multicasts on packet-switched interconnect

VCTM VS proposed Router

* VCTM:

* N. E. Jerger, L. S. Peh, M. Lipasti, Virtual Circuit Tree Multicasting: A case for On-chip hardware Multicast, Proceedings of the 35th annual international symposium on Computer architecture (ISCA), pp. 229–240, 2008.

- Motivation
- * Multicast scheme
- * Implementation
- * Path search Algorithm
- * Evaluation
- * Conclusion

* Packet for data transfer:

Head/ Body /Tail/HBT	Paket Type	Set/clear	SRC	MCT#	DST	VCID	Payload
2 bits	3 bits	1 bit	6 bits	4bits	6 bits	2 bits	Payload
00: Head	000 UC	х		ххх			
00: Head	011 MC NORMAL	х			XXX		

* UC: unicast data packet

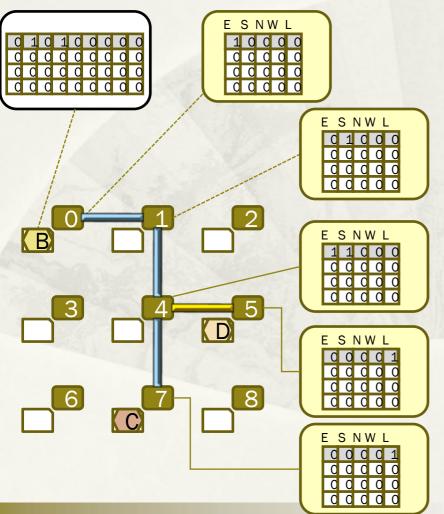
* MC NORMAL: multicast data packet

* Packet for path setup:

Head/ Body /Tail/HBT	Paket Type	Set/ clear	SRC	MCT#	DST	VCID	Payload
2 bits	3 bits	1 bit	6 bits	4bits	6 bits	2 bits	Payload
11: HBT	001 MC_SET_1	0 : set 1 : clear					6 bits '2 nd DST
11: HBT	010 MC_SET_2	0 : set 1 : clear					ххх
11: HBT	101 MC_ SETUP RPLY	0 : set 1: clear					

- * MC_SET_1: first period, routes to the intermediate node, no updating multicast table in router traversed
- * MC_SET_2: second period, routes to the destination node, updating multicast table in router traversed
- MC_SETUP_RPLY: to inform source node of success in sub-path setup

* Packet for path setup:

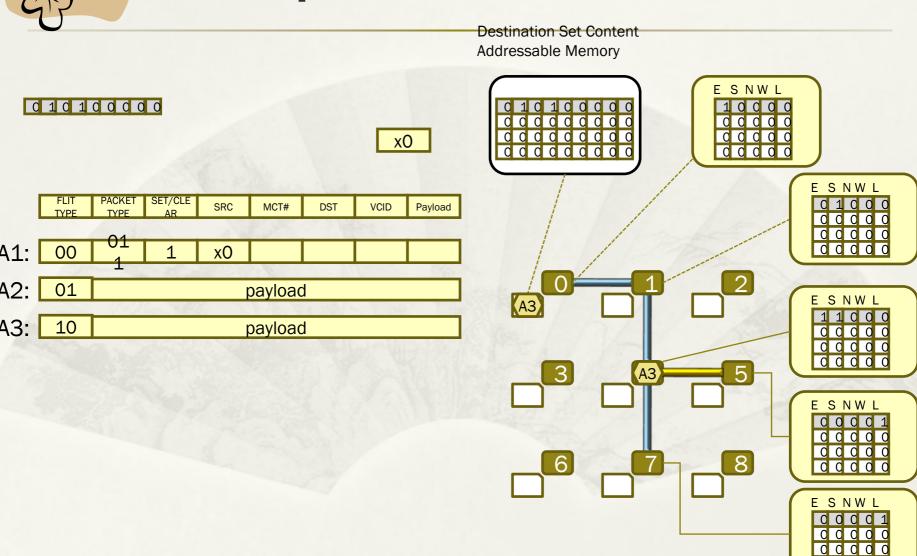

Head/ Body /Tail/HBT	Paket Type	Set/clear	SRC	MCT#	DST	VCID	Payload
2 bits	3 bits	1 bit	6 bits	4bits	6 bits	2 bits	Payload
11: HBT	100 MC_CLEAR	×			ххх		
11: HBT	110 MC_CLEAR_RPLY						

- MC_CLEAR: routes like multicast data packet, but would clear corresponding multicast table entry in the router traversed
- * MC_CLEAR_RPLY: to inform source node of success in evicting multicast tree

Example of path setup

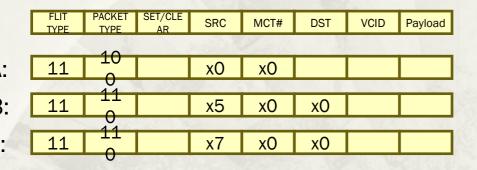
Destination Set Content Addressable Memory

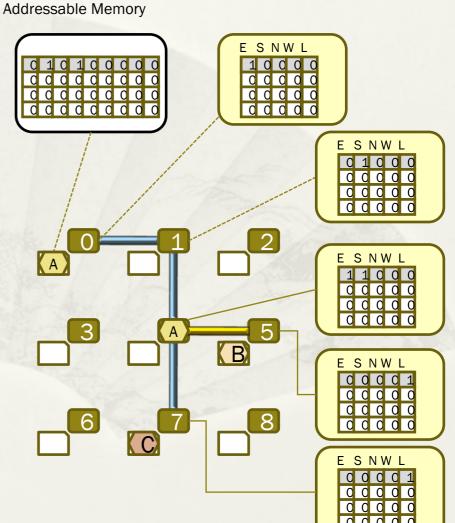
	FLIT TYPE	PACKET TYPE	SET/CLE AR	SRC	MCT#	DST	VCID	Payload
		01	7					75
A:	11	01	1	x0	x0	x7		
B:	11	00	1	x0	x0	х4		X5
Ti.		10	Mary of		h 15			
C:	11	10	1	х7	x0	x0		
×.,		10		A			630	
D:	11	$\frac{10}{4}$	1	х5	x0	x0		


Source 0 to destination set (5,7)

Setup packet: A and B

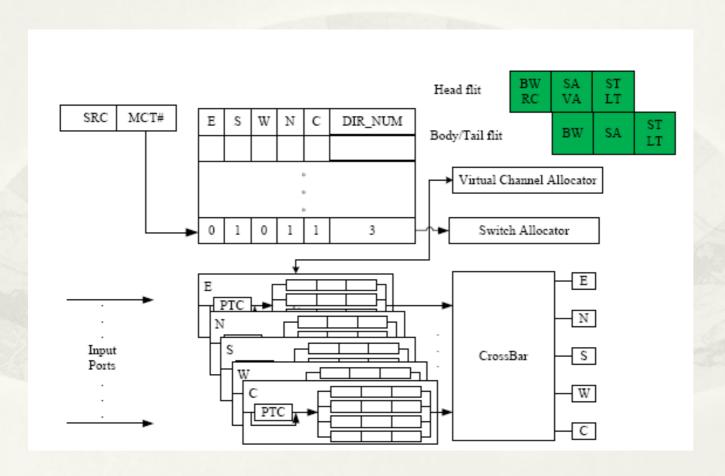
Reply packet: C and D


Example of data transfer

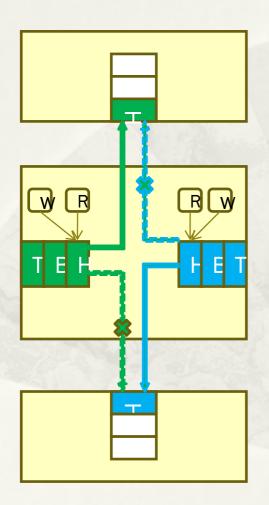


multicast tree evicting

Destination Set Content



- * Motivation
- * Multicast scheme
- * Implementation
- * Path search Algorithm
- * Evaluation
- * Conclusion




Router architecture

Deadlock free

- Motivation
- * Multicast scheme
- * Implementation
- * Path search Algorithm
- * Evaluation
- * Conclusion

Path search algorithm

- * To find (branch node, leaf node) pairs that can form the whole tree
- Tree shape optimization
- * Deadlock free
- * flexibility
 - Optimized algorithm: pre-configured before application running
 - * Simple algorithm: dynamically configuration

Optimized tree(OPT)

* West first turn model!!

Similar to minimal spanning tree algorithm

Algorithm: Generate the optimized multicast tree based on west-first turn model

Input: Destination set D, Source node $s:(x_0,y_0)$;

Output: Pair set D_{pair} ;

Define: k(a,b) = |a.y - b.y| + |a.x - b.x|;

Initial: $D_{node} \leftarrow s, D_{pair} \leftarrow \emptyset;$

1: Find the node $v \in D, \forall a \in D, v.y \leq a.y$. Add (s, v) into D_{pair} , removed v from D, add the nodes on the path from s to v into D_{node}

2: while D is not empty do

3: $D_{pair_tmp} \leftarrow \{(u, v) | u \in D_{node}, v \in D, that \forall a \in D_{node}, \forall b \in D, k(u, v) \leq k(a, b)\}$

4: Select $(u, v) \in D_{pair_tmp}$, that $\forall (a, b) \in D_{pair_tmp}$, $v.y \leq b.y$

5: Add (u, v) into D_{pair} , remove v from D, add the nodes on the path from u to v into D_{node}

6: end while

Left-XY-Right-Optimized Tree (LXYROPT)

into D_{node}

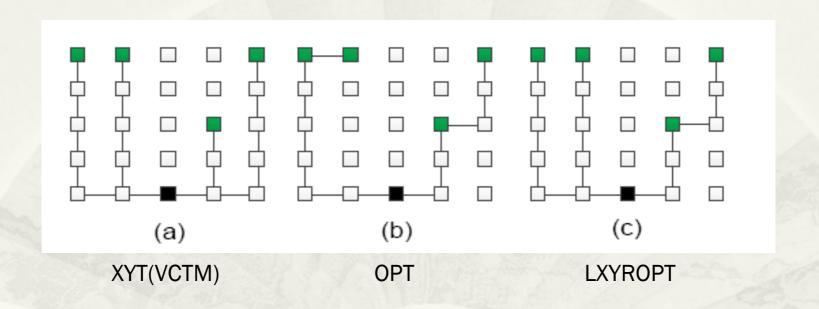
10: end while

* West first turn model!!

hops from
 each
 destination
 node to
 source node is
 minimum

```
Algorithm: Generate the LXYROPT multicast tree
based on west-first turn model
Input: Destination set D, Source node s:(x_0,y_0);
Output: Pair set D_{lpair}, D_{mrpair};
Define: k(a,b) = |a.y - b.y| + |a.x - b.x|;
Initial: D_{node} \leftarrow s, D_{lpair} \leftarrow \emptyset, D_{mrpair} \leftarrow \emptyset;
 1: D_{left} \leftarrow \{(x,y)|(x,y) \in D, y < y_0\}
 2: D_{mid-right} \leftarrow \{(x,y)|(x,y) \in D, y \geq y_0\}
 3: while D_{left} is not empty do
       Find a node v \in D_{left}, Add (s, v) into D_{lpair},
       remove v from D_{left}
 5: end while
 6: while D_{mid-right} is not empty do
       D_{pair\_tmp} \leftarrow \{(u, v) | u \in D_{node}, v \in D_{mid-right}, 
       that k(s, v) = k(s, u) + k(u, v)
       Select (u, v) \in D_{pair\_tmp}, that \forall (a, b) \in D_{pair\_tmp},
       k(u,v) \le k(a,b)
       Add (u, v) into D_{mrpair}, remove v from
```

 $D_{mid-right}$, add the nodes on the path from u to v



XYT(VCTM)

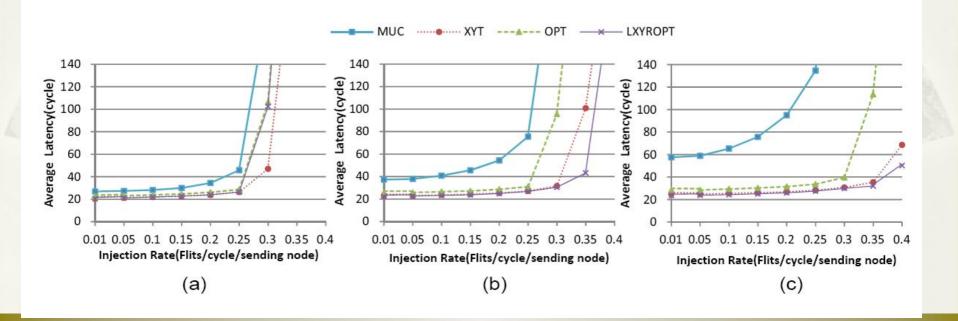
- Source node is defined as the intermediate node
- No overhead in path search
- * Fit for dynamically multicast path setup

Example of three algorithms

- * Motivation
- * Multicast scheme
- * Implementation
- * Path search Algorithm
- Evaluation
- * Conclusion

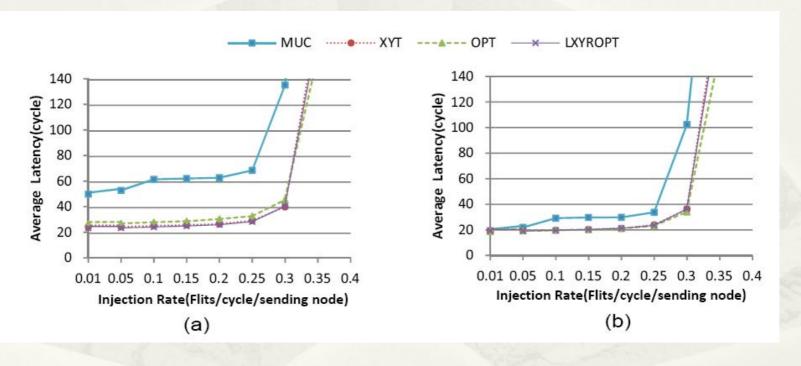
Network configuration

 A cycle-accurate router model based on SystemC


TABLE I NETWORK PARAMETERS

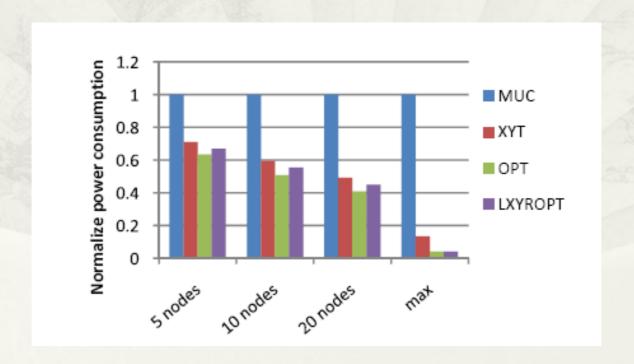
Topology	$8 \times 8 \text{ mesh}$
Routing	Multicast: Tag ID based
	Unicast: XY
Packet Size	1 flit: Multicast setup packet
	3 flits: others
Virtual Channels	4
Buffers per Channel	3
Router ports	3 For corner
	4 For border
	5 For others
Number of MCT entries	16

Multicast profile

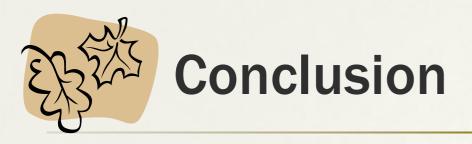

- * Source node is uniform distribution
- Destination node is uniform distribution
- Scenarios
 - * 16 source node, each to 5 nodes
 - * 8 source node, each to 10 nodes
 - * 4 source node, each to 20 nodes

Unicast and multicast mixed traffic profile

* Multicast is accounted for 20%


Multicast traffic

Unicast traffic


Power consumption

- Library of noxim
- Count the number of routing, selection, forward, incoming and standby during the simulation

- * Motivation
- * Multicast scheme
- * Implementation
- * Path search Algorithm
- * Evaluation
- * Conclusion

- A hardware supports any-shaped multicast path
- Two power-efficient path search algorithms
- Flexibility: support XYT(VCTM)
- Simple deadlock free scheme
- Open door for path search algorithm optimization

Tank you!!! Questions?