Selectively Patterned Masks: Structured ASIC with Asymptotically ASIC Performance

Donkyu Baek, Insup Shin, Seungwhun Paik, and Youngsoo Shin

Dept. of EE, KAIST, KOREA

Outline

- Introduction
- Selectively patterned masks (SPM)
 - Concept
 - Pattern transfer process
 - Analysis: mask cost, throughput
- Structured ASIC using SPM
 - Tile design
 - Logic synthesis
 - Routing architecture
- Experimental results
- Conclusion

ASIC Has Been Slowed Down

- New design starts decrease
- Global alliance of foundries emerges
- Increasing mask cost is one of reasons

Proce ss (μ)	2.0	0.8	0.6	0.35	0.25	0.18	0.13	0.10
Single Mask cost (\$K)	1.5	1.5	2.5	4.5	7.5	12	40	60
# of Masks	12	12	12	16	20	26	30	34
Mask Set cost (\$K)	18	18	30	72	150	312	1,000	2,000

EETimes, 2002

Structured ASIC

- Programmable device: a solution for mask cost
- Structured ASIC
 - Gate array has evolved into structured ASIC
 - Makes only contact/via masks for programming
 ←→ all metal and via masks in gate array

Structured ASIC

- Introduced in 1999
- Big success was expected
- Many companies jumped in the business in early 2000
- Not very successful
 - Not competitive to ASIC (area: 3 ~ 7 times, delay: 2 ~ 6 times)

Structured ASIC

- Current SA: only one type of "tile"
 - Tile must be designed to implement any logic: too much redundancy
- Is it possible to have multiple tiles?
 - Different designs would need different mix of tiles
 - \rightarrow Have to make ALL masks!

Selectively Patterned Masks (SPM)

- Tile masks: homogeneous just like SA, but more than one tiles
- Masking masks: used to selectively pattern tiles

Selectively Patterned Masks (SPM)

- How to selectively pattern? Method I: tile and masking masks together during lithography
- But, practical limitation...
 - Current lithography equipment does not support
 - Light through two masks become weaker

Mask Design in Double Exposure

• Boundary margin to accommodate

Light

Light diffraction

Х

 $x \ge y, x + y \ge 80$

V

Masking

mask

PR

Mask misalignment

Structured ASIC Using SPM

- Mask sets, metal masks: pre-fabricated
- Contact/via masks: fabricated for each design, used to program tiles & make connection
- Masking masks: fabricated for each design, but cheap

Analysis of Mask Cost

Cost model is similar to that of standard SA

	Pre-fabricated	Newly fabricated		
ASIC		All masks		
Standard SA	One tile mask set	Contact & via masks		
SA with SPM	Multiple tile mask sets	Contact & via masks + Masking masks		

Analysis of Manufacturing Throughput

 Use of masking masks and multiple tiles increase manufacturing time

	Exposure	Etching		
Standard patterning	One time	One time		
Selective patterning	# of tiles × 2	# of tiles		

Structured ASIC Using SPM

Tile Design

- Three tile architectures
 - $-T_1$: three basic logic gates
 - $-T_2$: two complex gates
 - T₃: F/F (with set/reset)

Logic Synthesis

- **Gate library**: models each "gate" (NOT tile)
- Logic synthesis
 - 1. Initial netlist is made such that each gate occupies one tile

Logic Synthesis

- 2. Initial placement
- 3. Locate T2 \rightarrow merge with nearest T1

Logic Synthesis

 Merge adjacent "three" T₁s ← scan tiles from bottomleft to upper-right of placement

Routing Architecture

- A grid (made of M3+M4) is placed on top of each tile (two grids for T3)
- Programmable via is used for inter-tile connection

Experimental Results

- Area-optimized design
 - SPM/ASIC = $2 \leftrightarrow 3 \sim 7$ in conventional SA
 - Why area increases? \rightarrow tile height & tile utilization

Experimental Results

- Delay-optimized design
 - SPM/ASIC = $1.2 \leftrightarrow 2 \sim 4$ in conventional SA
 - Why delay increases? \rightarrow lack of gates & routing arch.

Experimental Results

- Design space (area vs. delay curve)
 - Delay opt. \rightarrow SPM/ASIC = 1.26 (delay), 1.69 (area)
 - Area opt. \rightarrow SPM/ASIC = 0.9 (delay), 2.1 (area)
 - Why large gap occur? \rightarrow lack of gates & tile regularity

Conclusion

- Current structured ASIC (SA)
 - Performance limited due to "regularity"
- SPM
 - Allows "irregular" structured ASIC with similar mask cost as SA
 - Prototype SA using SPM was demonstrated
- Future works
 - Logic synthesis
 - Routing algorithm