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Context

System simulation

> Architecture validation and early software coding

» Optimize hardware/software performances and consumption through
architecture exploration

» Simulation speed is an issue
o High level simulation models increasingly used

Cycle-accurate simulation

» Hardware protocol validation and accurate power/energy estimation
» Components modeled at the finite state machine (FSM) level
e Many events during the simulation

» Low simulation speed
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Introduction ->

Motivation

Static scheduling approaches
» Sequential part of the components executed only once per clock cycle
» 3X to 5X faster than dynamic scheduling

» Static scheduling computed off-line

e Impose constraints
o Architectures containing components working at different frequencies not

supported
e Dynamic frequencies change not supported

Nowadays IPs

» Designed to belong to voltage-frequency islands
» DVFS used for power efficiency

Contribution: 2 static scheduling strategies for such architectures
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Introduction ->

FSM Based Simulators / SystemCASS

FSMs
» Connected to the component ports
» Moore: outputs depend only on the current state
> Mealy: outputs depend on the current state and the inputs
» Transition, Moore and Mealy functions

SystemCASS

» Modeling constraints
o FSMs synchronous on an unique clock

e Transition functions: positive clock edge void simulate_a_cycle ()
o Moore functions: negative clock edge /lpositive clock edge
o Mealy functions: negative clock edge and input ports | {oistacreisters (;
» Implementation J/negative clock edge
. i moore_functions ();
o No event notification when a signal value changes }stab_aﬂ_mealy_functlons 0

» Optimizations
o Signals have only the current value
o Calling order of the Mealy functions computed using a
graph of dependencies
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e Multiple clocks approach
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Multiple clocks approach ->

Multiple clocks Approach

Characteristics
> Uses multiple clock components
e Dependency on non clock signals not allowed

» Main idea: scheduling pattern with the period equal to the least common
multiple (LCM) of the clocks periods

» Simulation point: contains at least a clock edge

Scheduling pattern example
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Details

Implementation & execution

» Processes are sorted

o A list of Transition and a list of Moore functions for each clock
o These lists don't change during the simulation

> A list of simulation points

o A list of positive and a list of negative clock edges
e Time offset to be added to pass to next simulation point

» Execution of a simulation point

\void simulation_point ()
transition_functions_simpoint ();
moore_functions_simpoint ();
updaté_registers ();

stab_all_mealy_functions ();

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Architecture example

Modeling

» The Interconnect, RAM, TTY etc. use the frequency of the system clock

» The frequency of each processor and its caches generate by a clock

component
CLK ygem
[ [ |
[ RAM ] [Other peripherals] [ TTY ]
it i 1
[ Interconnect }
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Run-time Change of the Frequencies

Characteristics

> A new API added to the clock component: change_period
» Scheduling pattern recomputed
» Frequency changes at the next edge of the target clock

Frequency change example
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Multiple clocks approach ->

Details

Run-time frequency change

» Scheduling pattern recomputed
> Takes time

e Number of simulation points in the new scheduling pattern

Tpattern = 12 L Py Py Py Py }J
[ i [null[1] 3—{null] ‘1' a4------- [ i [ i [13—{null] i [
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e Frequency division approach
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Frequency Division Approach

Characteristics

v

Uses a single clock component

v

Frequency equal to the LCM of all possible frequencies

v

The components frequencies obtained by division
e Dependency on non clock signals allowed

v

The simulation cycle changes
o Call of the functions dependent on non clock signals

void simulate_a_cycle ()

/Ipositive clock edge
transition_functions ();
update_registers ();

//negative clock edge
moore_functions ();

transition_functions_non_clock S|ginal()
moore_functions_non_clock_signa
update_registers();

stab_all_mealy_functions ();
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Architecture example

Modeling

» The frequency of the Interconnect, RAM, TTY etc. given by the frequency
divisor

» The frequency of each processor and its caches generated by the DVFS

component
CLK
M Frequency
—T divisor T T ]
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Frequency division approach ->

Details

Implementation

» Sort the Transition and Moore functions depending on the unique clock
edges (SystemCASS part)

> Create a list of Transition and a list of Moore functions depending on non
clock signal edges

» Generate a function for these 2 lists

o Call the Transition and Moore functions on their required signal edge
o A static variable (v1) for each generated clock signal

run-time

void out_signal_clock_transition_processes ()

register fct p;

static unsigned char vl = 0;

|{f(*(un5|gned char *) 0x934ch84UL != v1)
dynamic vl = *(unsigned char *) 0x934cb84UL;
linkinging if (v1)

- // ARM1->transition ()

compilation p.integer = 0x80a7160UL;

- pf ((void *) 0x86d1fasUL);
code.so
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Frequency division approach ->

Limitations

Static scheduling simulator based on multiple clocks
» The clock periods must be in a harmonic ratio to allow their LCM
computation

» Can not be used for architectures containing generated clock signals that are
not periodical

Static scheduling simulator based on frequency division

» Can not be used if there is at least one frequency unknown when the
architecture is modeled

» A single level of signal dependency is permitted
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o Experimental results
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Experimental results ->

Motion-JPEG Application Case Study

Software stack O somarnk

QUANTIZATION TABLE

[] Hardware task

» Motion-JPEG decoding application
» Mutek operating system

o POSIX compliant

o SMP version

» Energy saving algorithm - 1.5
frequency changes / simulated ms

Hardware platform ax

|
[RAM ]NST] [RAM DATA] [SEMRAM] [ TTY
Processors T T T

Caches

Interconnect
Memories
DVFSes

>
>
>
>
>
>
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Experimental results ->

Experimental Results

Hardware architecture

» SoCLib components

» Compiled and linked with several simulators

SystemC - reference

SystemCASS

Multiple clock based static scheduling simulator
Frequency division based static scheduling simulator

Simulator Simulation speedup vs. SystemC

1 frequency Multiple frequencies
SystemCass 3.50 X NA
Frequency division 3.50 X 331X
Multiple clocks 3.53 X 3.81 X
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Experimental results ->

Synthetic Architecture Case Study

Configurable hardware architecture

» Number of modules working at the system frequency
o Some generates the clock signal for other modules

> Input and output ports, registers

» Number of frequency changes / simulated ms

» Pure hardware platform (no software stack)
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Experimental results ->

Experimental Results (1)

Multiple clock simulator

» Simulation speedup

o Number of simulation points in scheduling pattern
o Number of frequency changes
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points

Speedup vs. SystemC
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Experimental results ->

Experimental Results (2)

Frequency division simulator

» Simulation speedup

o Ratio between the unique clock frequency and the system frequency
e Does not depend on the number of frequency changes
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Conclusion and Perspectives

Simulations strategies implemented at the CA abstraction level

» Static scheduling

» Support multiple frequencies that can change runtime

e Multiple clock components - runtime change of the their period
o Division of a single frequency

» Simulation speedup of 3.5 compared to a dynamic scheduling simulator

Future works

» Improve the simulation speed when the frequencies change often
o Memorize the scheduling patterns already computed
Equivalence scheme between the scheduling patterns
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