q : I
e TIMA Lasorarory
ll Technigues of Informatics and Microelectronics for integrated systerns Architecture

Handling Dynamic Frequency Changes in
Statically Scheduled Cycle-Accurate Simulation

Marius Gligor and Frédéric Pétrot

TIMA Laboratory - SLS Group, INP-UJF-CNRS
Grenoble, France

January 27, 2011

ASIA SOUTH PACIFIC

DESIGH
u AUTOMATION
DRFEREMCE



Outline

o Introduction

M. Gligor - Handli namic Frequency Changes in Statically Scheduled Accurate Simulation



Context

System simulation

> Architecture validation and early software coding

» Optimize hardware/software performances and consumption through
architecture exploration

» Simulation speed is an issue
o High level simulation models increasingly used

Cycle-accurate simulation

» Hardware protocol validation and accurate power/energy estimation
» Components modeled at the finite state machine (FSM) level
e Many events during the simulation

» Low simulation speed

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Introduction ->

Motivation

Static scheduling approaches
» Sequential part of the components executed only once per clock cycle
» 3X to 5X faster than dynamic scheduling

» Static scheduling computed off-line

e Impose constraints
o Architectures containing components working at different frequencies not

supported
e Dynamic frequencies change not supported

Nowadays IPs

» Designed to belong to voltage-frequency islands
» DVFS used for power efficiency

Contribution: 2 static scheduling strategies for such architectures

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Introduction ->

FSM Based Simulators / SystemCASS

FSMs
» Connected to the component ports
» Moore: outputs depend only on the current state
> Mealy: outputs depend on the current state and the inputs
» Transition, Moore and Mealy functions

SystemCASS

» Modeling constraints
o FSMs synchronous on an unique clock

e Transition functions: positive clock edge void simulate_a_cycle ()
o Moore functions: negative clock edge /lpositive clock edge
o Mealy functions: negative clock edge and input ports | {oistacreisters (;
» Implementation J/negative clock edge
. i moore_functions ();
o No event notification when a signal value changes }stab_aﬂ_mealy_functlons 0

» Optimizations
o Signals have only the current value
o Calling order of the Mealy functions computed using a
graph of dependencies

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



)
Outline

e Multiple clocks approach

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Multiple clocks approach ->

Multiple clocks Approach

Characteristics
> Uses multiple clock components
e Dependency on non clock signals not allowed

» Main idea: scheduling pattern with the period equal to the least common
multiple (LCM) of the clocks periods

» Simulation point: contains at least a clock edge

Scheduling pattern example
Tpattem =12

CLK; ! |
(=4 ‘ !

CLK; | i i . - ! !
6 1 | ] |

‘P1_ iPy Py Py P iPg (P; Py Py P Py iPp
4CLK; | {CLK3 | JCLK; | {CLKy | 4CLKy | JCLK3 | {CLK; | {CLK3 | }CLK; | §CLK; | CLKy | §CLK3 |
1 }CLK 1 | ACLK3 1 {CLK3 | $CLK3 1 | {CLK; 1 | ACLK3 | {CLK3 1 4CLK3 1 I
| CLK; | ! ! | ! ' {CLKj | ! ! | | ‘

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



;
Details

Implementation & execution

» Processes are sorted

o A list of Transition and a list of Moore functions for each clock
o These lists don't change during the simulation

> A list of simulation points

o A list of positive and a list of negative clock edges
e Time offset to be added to pass to next simulation point

» Execution of a simulation point

\void simulation_point ()
transition_functions_simpoint ();
moore_functions_simpoint ();
updaté_registers ();

stab_all_mealy_functions ();

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Architecture example

Modeling

» The Interconnect, RAM, TTY etc. use the frequency of the system clock

» The frequency of each processor and its caches generate by a clock

component
CLK ygem
[ [ |
[ RAM ] [Other peripherals] [ TTY ]
it i 1
[ Interconnect }

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Run-time Change of the Frequencies

Characteristics

> A new API added to the clock component: change_period
» Scheduling pattern recomputed
» Frequency changes at the next edge of the target clock

Frequency change example

Tpattern =12

| CLK, D 1

e e I S e NS S e N N
o, b e

@ . e e |
| CLK; | : : : : b : ! : : : !

Ty=2

[SEOE S I s R S e R I S S B
Py IP, Py Py IPs IPg P, Py Py [P Py Py [Py
3 ACLK; | yCLK3 | jCLK; | }CLKy | }CLK; 1 {CLK3 | §CLK; | {CLK3 | }CLK; ' {CLK, | {CLK; | {CLK, | 4CLK; |
1 4CLK 1 | ACLK3 1 {CLK3 | 4CLK3 1 | 4CLK; | | 4CLK3 ! {CLK3 1 §CLK; | yCLK3 i 4CLK, !
1 41CLK; | . . . . | {CLK3 | . ! | }CLK; | | 4CLK; !

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Multiple clocks approach ->

Details

Run-time frequency change

» Scheduling pattern recomputed
> Takes time

e Number of simulation points in the new scheduling pattern

Tpattern = 12 L Py Py Py Py }J
[ i [null[1] 3—{null] ‘1' a4------- [ i [ i [13—{null] i [
[rcLky] [fcLks] [fCLK] [fcLks]
[ null ] [ null | [ null | null

<

Tf)attern =4 L Py Py }J
[null] i A4y [ i [ 3—>{null] 1 [T+ i [null[l[

0
[tcLK,] [FCLK,] [yCLK ] ||,CLK2| [feLky]
[ null |
)
null L]

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



)
Outline

e Frequency division approach

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Accurate Simulation



Frequency Division Approach

Characteristics

v

Uses a single clock component

v

Frequency equal to the LCM of all possible frequencies

v

The components frequencies obtained by division
e Dependency on non clock signals allowed

v

The simulation cycle changes
o Call of the functions dependent on non clock signals

void simulate_a_cycle ()

/Ipositive clock edge
transition_functions ();
update_registers ();

//negative clock edge
moore_functions ();

transition_functions_non_clock S|ginal()
moore_functions_non_clock_signa
update_registers();

stab_all_mealy_functions ();

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Architecture example

Modeling

» The frequency of the Interconnect, RAM, TTY etc. given by the frequency
divisor

» The frequency of each processor and its caches generated by the DVFS

component
CLK
M Frequency
—T divisor T T ]
{ RAM ] [Other peripherals} [ TTY 1
i il il
[ Interconnect ]

|
| ' ' !

- i ' ' i

: I L b

L > INST. |DATA |5 | ! i ! i
: I | SSCPU 2. ‘SSCPUN:
3 b b 3
' > CPU : | ' | !
SSCPUL ! ?4% oo

| T

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Frequency division approach ->

Details

Implementation

» Sort the Transition and Moore functions depending on the unique clock
edges (SystemCASS part)

> Create a list of Transition and a list of Moore functions depending on non
clock signal edges

» Generate a function for these 2 lists

o Call the Transition and Moore functions on their required signal edge
o A static variable (v1) for each generated clock signal

run-time

void out_signal_clock_transition_processes ()

register fct p;

static unsigned char vl = 0;

|{f(*(un5|gned char *) 0x934ch84UL != v1)
dynamic vl = *(unsigned char *) 0x934cb84UL;
linkinging if (v1)

- // ARM1->transition ()

compilation p.integer = 0x80a7160UL;

- pf ((void *) 0x86d1fasUL);
code.so

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Frequency division approach ->

Limitations

Static scheduling simulator based on multiple clocks
» The clock periods must be in a harmonic ratio to allow their LCM
computation

» Can not be used for architectures containing generated clock signals that are
not periodical

Static scheduling simulator based on frequency division

» Can not be used if there is at least one frequency unknown when the
architecture is modeled

» A single level of signal dependency is permitted

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



)
Outline

o Experimental results

M. Gligor - Handli namic Frequency Changes in Statically Scheduled Accurate Simulation



Experimental results ->

Motion-JPEG Application Case Study

Software stack O somarnk

QUANTIZATION TABLE

[] Hardware task

» Motion-JPEG decoding application
» Mutek operating system

o POSIX compliant

o SMP version

» Energy saving algorithm - 1.5
frequency changes / simulated ms

Hardware platform ax

|
[RAM ]NST] [RAM DATA] [SEMRAM] [ TTY
Processors T T T

Caches

Interconnect
Memories
DVFSes

>
>
>
>
>
>

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Experimental results ->

Experimental Results

Hardware architecture

» SoCLib components

» Compiled and linked with several simulators

SystemC - reference

SystemCASS

Multiple clock based static scheduling simulator
Frequency division based static scheduling simulator

Simulator Simulation speedup vs. SystemC

1 frequency Multiple frequencies
SystemCass 3.50 X NA
Frequency division 3.50 X 331X
Multiple clocks 3.53 X 3.81 X

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Experimental results ->

Synthetic Architecture Case Study

Configurable hardware architecture

» Number of modules working at the system frequency
o Some generates the clock signal for other modules

> Input and output ports, registers

» Number of frequency changes / simulated ms

» Pure hardware platform (no software stack)

CLKO CLK1'SS |
_nn J [ | §
ClkMod 1 ’r>[ EndMod 1,1 }:’Z>[ EndMod 1,M }T

m %

) m |

¥

ClkMod NC  [CEKNC CLKNC S5 |
m i

km

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Experimental results ->

Experimental Results (1)

Multiple clock simulator

» Simulation speedup

o Number of simulation points in scheduling pattern
o Number of frequency changes

20 ——
184 —x—
2196
11818 —5—
65918 —m—

Number of
simulation
points

Speedup vs. SystemC

0 L L L L
0 100 200 300 400 500

Number of frequency changes / ms

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Experimental results ->

Experimental Results (2)

Frequency division simulator

» Simulation speedup

o Ratio between the unique clock frequency and the system frequency
e Does not depend on the number of frequency changes

4 3

(.E) 35+ 5 —x%—
5 —x—

§ 2 % % % % 21
& 257} 41 —m—
g 2F Ration
2 158 — = = = = " LCM / system
§ 1L frequencies
& o5t

0 1 1 1 1

0 100 200 300 400 500

Number of frequency changes / ms

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



)
Outline

e Conclusion and Perspectives

M. Gligor - Handli namic Frequency Changes in Statically Scheduled Accurate Simulation



Conclusion and Perspectives

Simulations strategies implemented at the CA abstraction level

» Static scheduling

» Support multiple frequencies that can change runtime

e Multiple clock components - runtime change of the their period
o Division of a single frequency

» Simulation speedup of 3.5 compared to a dynamic scheduling simulator

Future works

» Improve the simulation speed when the frequencies change often
o Memorize the scheduling patterns already computed
Equivalence scheme between the scheduling patterns

M. Gligor - Handling Dynamic Frequency Changes in Statically Scheduled Cycle-Accurate Simulation



Thank you!

{marius.gligor@imag.fr}



	Introduction
	Multiple clocks approach
	Frequency division approach
	Experimental results
	Conclusion and Perspectives

