
T-SPaCS – A Two-Level Single-Pass
Cache Simulation Methodology

+ Also Affiliated with NSF Center for High-
Performance Reconfigurable Computing

Wei Zang and Ann Gordon-Ross+

University of Florida
Department of Electrical and Computer Engineering

• Power hungry caches are a good candidate for optimizations
• Different applications have vastly different cache requirements

– Configure cache parameters: size, line size, associativity

– Cache parameters that do not match an application’s behavior can waste
over 60% of energy (Gordon-Ross 05)

• Cache tuning
– Determine appropriate cache parameters (cache configuration) to meet

optimization goals (e.g., lowest energy)
– Difficult to determine the best cache configuration given very large

design spaces for highly configurable caches

Introduction

2

line size associativitysize

Simulation-Based Cache Tuning
• Cache tuning at design time via simulation
– Performed by the designer
– Typically iterative simulation using exhaustive or heuristic methods

3

Instruction Set Simulator

Embedded
Application

Simulating
with c1

Miss rate
with c1

. . .

. . .

. . .

Simulating
with c2

Simulating
with c3

Simulating
with cn

Miss rate
with c2

Miss rate
with c3

Miss rate
with cn

Lowest
energy c3

…very time
consuming (setup

and simulation time)…

C1,C2,C3,…,Cn are the
n cache configurations
in design space

• Simultaneously evaluate multiple cache configurations
during one execution

– Trace-driven cache simulation
• Use memory reference trace

Generate trace
file through

single
functional
simulation

Single-Pass Cache Tuning

4

Embedded
Application

Single-pass
trace-driven

cache simulation Miss rate
with c3

Miss rate
with c1

Miss rate
with c2

Miss rate
with cn

. . .

. . .

Speedup
simulation time

Lowest energy
c3

Previous Work in Single-Pass Simulation
• Stack-based algorithm
– Stack data structure stores access trace
– State-of-the-art: 14X speedup over iterative (Viana 08)

• Tree data structure-based algorithm
– Decreased simulation time
– Complex data structures, more storage requirements

• Limitation

5

.

Processor

L1 cache

Main Mem

L2 cache

Processor

L1 cache

Main Mem
Becoming

more popular

Contributions
• Two-level Single-Pass trace-driven Cache Simulation

methodology – T-SPaCS
• Use a stack-based algorithm to simulate both the level

one and level two caches simultaneously
• Accurately determine the optimal energy cache

configuration with low storage and simulation time
complexity

6

Single-level Cache Simulation
• Stack-based single-pass trace-driven cache simulation for

single-level cache

7

One cache configuration in design space:
block size = 4 (22), number of cache sets = 8 (23)

Stack

Trace addresses

001 111 10
010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

Block
offset

Indextag

(001) 111 10

001 111 10
010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

No previous
access in stack

Processing address

Search stack

Compulsory miss

Stack update

(001) 111 10

Single-level Cache Simulation
• Stack-based single-pass trace-driven cache simulation for

single-level cache

8

One cache configuration in design space:
block size = 4 (22), number of cache sets = 8 (23)

Stack

Trace addresses

001 111 10
010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

Block
offset

Indextag

(010) 111 10

010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

No previous
access in stack

Processing address

Search stack

Compulsory miss

(001) 111 10

Stack update

(010) 111 10

Single-level Cache Simulation
• Stack-based single-pass trace-driven cache simulation for

single-level cache

9

One cache configuration in design space:
block size = 4 (22), number of cache sets = 8 (23)

Stack

Trace addresses

001 111 10
010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

Block
offset

Indextag

(101) 010 00

101 010 00
111 111 01
110 101 00
010 111 10

No previous
access in stack

Processing address

Search stack

Compulsory miss

(001) 111 10
(010) 111 10

Stack update

(101) 010 00

Single-level Cache Simulation
• Stack-based single-pass trace-driven cache simulation for

single-level cache

10

One cache configuration in design space:
block size = 4 (22), number of cache sets = 8 (23)

Stack

Trace addresses

001 111 10
010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

Block
offset

Indextag

(111) 111 01

111 111 01
110 101 00
010 111 10

No previous
access in stack

Processing address

Search stack

Compulsory miss

(001) 111 10
(010) 111 10
(101) 010 00

Stack update

(111) 111 01

Single-level Cache Simulation
• Stack-based single-pass trace-driven cache simulation for

single-level cache

11

One cache configuration in design space:
block size = 4 (22), number of cache sets = 8 (23)

Stack

Trace addresses

001 111 10
010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

Block
offset

Indextag

(110) 101 00

110 101 00
010 111 10

No previous
access in stack

Processing address

Search stack

Compulsory miss
(001) 111 10
(010) 111 10
(101) 010 00
(111) 111 01

Stack update

(110) 101 00

Single-level Cache Simulation
• Stack-based single-pass trace-driven cache simulation for

single-level cache

12

One cache configuration in design space:
block size = 4 (22), number of cache sets = 8 (23)

Stack

Trace addresses

001 111 10
010 111 10
101 010 00
111 111 01
110 101 00
010 111 10

Block
offset

Indextag

010 111 10

(001) 111

Processing address

10

(010) 111 10

(010) 111 10
(101) 010 00
(111) 111 01
(110) 101 00Search stack

same block

(010) 111 10

(111) 111 01

Conflicts: blocks that map to the same
cache set as processed address

Conflicts # = 1
cache associativity >= 2, hit

Stack
update

Two-Level Cache Simulation
• Stack-based single-level cache simulation maintains one

stack to record L1 access trace
• Naïve adaption of stack-based single-level cache

simulation to two-level caches requires multiple stacks
– Assumes inclusive cache hierarchy
– L1 access trace: one stack based on memory reference trace
– L2 access trace: depends on L1 miss
– Requires n stacks for n L1 configurations
– Disadvantage: large storage space and lengthy simulation time

• To reduce storage space and simulation time

Exclusive cache hierarchy!

13

Inclusive vs. Exclusive Hierarchy

14

Inclusive Operation (L1/L2 LRU) Exclusive Operation (L1 LRU, L2 FIFO-like)

Trace L1 (2-way) L2 (2-way) Hit/miss Trace L1 (2-way) L2 (2-way) Hit/miss

B B A B A L1/L2 miss
A A B B A L1 hit

C C A C B L1/L2 miss

A A L1/L2 miss

B B A L1/L2 miss

A A B L1 hit

C C A B L1/L2 miss

B B C B C L2 hit B B C A L2 hit

L1 hits do not access L2
L2 access is decided by L1
Seperate L1 and L2 Combined cache

L1 c 1

L1 c2
L1 c3
L1 c

n

. . .

. . .

L2 stacks

L1 stack
L1 stack

Simulate L1 &
combined cache

and derive L2 cache

One Stack!
Reduced storage space

and simulation time

A A A L1/L2 miss

T-SPaCS Overview

15

Execute
application

Access trace file

T-SPaCS

StackStack processing
for conflicts

for each B and S1, S2

L1 analysis
based on conflicts #

for all W1

L1 miss

L2 analysis

Stack update

T[t] is
L1 hit/miss

T[t] is
L2 hit/miss

T[t]

L2 analysis

T[N]

:
T[t]

:
T[3]
T[2]
T[1]

Cache config.
in design space

Accumulated
L1 & L2 misses

for all cache config.

B: block size
S1:number of sets in L1
S2: number of sets in L2
W1 : number of associativities in L1
W2 : number of associativities in L2

L2 Analysis
• Stack processing for combined cache

– Conflict evaluation (same as single-level cache)

• Compare-exclude operation to derive L2 conflicts
– Conflicts for combined cache still contain some conflicts stored in L1
– Isolate the exclusive L2 conflicts
– Based on three different inclusion relationships; consider as three

scenarios

16

Scenario 1: S1 = S2

Conflicts for combined cache

L1 conflicts L2 conflicts

Scenario 2: S1 < S2

L1 conflicts L2 conflicts

Scenario 3: S1 > S2

L1 conflicts L2 conflicts

S1:number of sets in L1
S2: number of sets in L2

X1

Scenario 1: S1 = S2

17

Trace
X1X2X3X4X1

L1 set (2 ways) L2 set (2 ways)

Stack

Access X1 Conflicts: X4 X3 X2

L1 miss when W1=2 Blocks in L1 L2 conflicts

L2 conflicts # =1, L2 hit when W2>=2

X2X3X4

X1X2X3X4X1

S1:number of sets in L1
S2: number of sets in L2

Scenario 2: S1 < S2

18

L2 set (2 ways)Trace
X1Y1X2X3Y4X1

L2 set (2 ways)

L1 set (2 ways)

Stack

Access X1 L1 Conflicts: Y4 X3 X2 Y1

Conflicts for combined cache: X3 X2

Blocks in L1

L2 conflicts

L2 conflicts # =1, L2 hit when W2>=2

L1 miss when W1=2

X1Y1X2X3Y4X1

X1Y1X2X3Y4

S1:number of sets in L1
S2: number of sets in L2

Y2Y1X1X2X3X4X5

Special Case in Scenario 2

19

Trace
X4Y1 X2 X3X2 X1 X5Y2X5 L2 set (4 ways)

L2 set (4 ways)

L1 set (2 ways)

Stack
Access X5

BLK

Occupied blank
(fetching X2 evicted Y1 that

maps to different L2 set)

• From cache: miss in L1/L2
• From compare-exclude operation:

bit-array

bit-array
Blocks in L1: X2 Y2

Conflicts for combined cache : X2 X1 X3 X4

. . .

L2 conflictsL2 conflicts # =3 < 4, L2 hit !

Solution: occupied blank labeling
o Bit-array to label BLK, ‘set’ bit: an BLK follows labeled address.
o In processing X2, label BLK with the W2 –th L2 conflict(X4).
o In processing X5, detected BLK in the bit-array of X4. (i.e., X4 is the last
block in L2). X5 is L2 miss.

X4Y1 X2 X3X2 X1 X5Y2X5

Access X2
Hit in L2

X5

S1:number of sets in L1
S2: number of sets in L2

Inaccurate! L2 conflicts should count BLK after X4

X4Y3X3Y2X2Y1X1

Scenario 3: S1 > S2

20

L2 set (4 ways)

Trace
X1Y1X2X3X4X1 Y2Y3

L1 set (2 ways)

L1 set (2 ways)Stack

Access X1

(Complimentary set)

L1 Conflicts: X4 X3 X2

Blocks in L1L1 miss when W1=2

Conflicts for complimentary set: Y3 Y2 Y1

Blocks in complimentary set

Conflicts for combined cache: X4 Y3 X3 Y2 X2 Y1

L2 conflicts

L2 conflicts # =2, L2 hit when W2>=3

X1Y1X2X3X4X1 Y2Y3

S1:number of sets in L1
S2: number of sets in L2

Accelerate Stack Processing
• Stack processing: very time consuming!
• Conflicts for one L1 configuration repeatedly compared with conflicts

for all L2 configurations
• Save conflicts in a tree structure for later reference

21

Store conflicts with “10” index
Smin

Conflict Evaluation

Stack
address

Conflict

S

Store in tree node

Next
stack address

S1:number of sets in L1
S2: number of sets in L2

Experiment Setup
• Design space

– L1: cache size (2k 8k bytes); block size (16B 64B); associativity
(direct-mapped 4-way)

– L2: cache size (16k 64k bytes); block size (16B 64B); associativity
(direct-mapped 4-way)

– 243 configurations
• Exclusive cache requires L1 and L2 to have the same block size

• 24 benchmarks from EEMBC, Powerstone, and MediaBench
• Modify ‘sim-fast’ to generate access traces
• Modify ‘sim-cache’ to simulate exclusive hierarchy cache to

produce the exact miss rates for comparison
• Build energy model to determine optimal cache configuration

with minimum energy consumption (Gordon-Ross 09)
22

Results – Miss Rate Accuracy
• L1 miss rate

– 100% accurate for all benchmarks

• L2 miss rate
– Accurate for 240 configurations (99% of the design space)
– Across all benchmarks

• Inaccuracy comes from Scenario 3: S1 > S2

– Reason
• Multiple L1 sets evict blocks in the same L2 set
• Eviction order is not consistent to access order

– Introduced error is small

• Tuning accuracy: accurately determined energy optimal cache!
23

Max. average miss rate err. Max. standard deviation Max. absolute miss rate err.

1.16% 0.64% 1.55%

S1:number of sets in L1
S2: number of sets in L2

Simplified-T-SPaCS
• Omit occupied blank labeling to reduce complexity and

simulation time
• Tradeoff – additional miss rate error

– L2 miss rate errors for additional 228 configurations where S1 < S2

(95% of the design space)
– Across all benchmarks

• Tuning accuracy: accurately determined energy optimal cache!

24

Max. average miss rate err. Max. standard deviation Max. absolute miss rate err.

0.71% 0.90% 3.35%

S1:number of sets in L1
S2: number of sets in L2

Simulation Time Efficiency

25

Max 18X Avg 8XMax 24.7X Avg 15.5X

Conclusions
• T-SPaCS simulates instruction cache with exclusive

hierarchy in a single-pass
• T-SPaCS reduces the storage and time complexity

– T-SPaCS is 8X faster than iterative simulation on average
– Simplified-T-SPaCS increases average simulation speedup to 15X

at the expense of inaccurate miss rates for 95% of the design space
– Both T-SPaCS and simplified-T-SPaCS can determine accurate

optimal energy configurations

• Our ongoing work extends T-SPaCS to simulate data and
unified cache, and implement in hardware for dynamic
cache tuning

26

	Introduction
	Simulation-Based Cache Tuning
	Single-Pass Cache Tuning
	Previous Work in Single-Pass Simulation
	Contributions
	Single-level Cache Simulation
	Single-level Cache Simulation
	Single-level Cache Simulation
	Single-level Cache Simulation
	Single-level Cache Simulation
	Single-level Cache Simulation
	Two-Level Cache Simulation
	Inclusive vs. Exclusive Hierarchy
	T-SPaCS Overview
	L2 Analysis
	Scenario 1: S1 = S2
	Scenario 2: S1 < S2
	Special Case in Scenario 2
	Scenario 3: S1 > S2
	Accelerate Stack Processing
	Experiment Setup
	Results – Miss Rate Accuracy
	Simplified-T-SPaCS
	Simulation Time Efficiency
	Conclusions

