
Technique for obtain data
address for model a data
cache in native source-code
HW/SW co-simulation

Luis Díaz, Hector Posadas & Eugenio Villar
University of Cantabria

{luisds, posadash, villar}@teisa.unican.es

Index

Introduction
Data cache modeling solution

Memory access anotations
Data cache model

Test and Results
Conclusions

Introduction
Fast mechanisms for performance estimation
required early in the design flow

Lots of simulations required for design space exploration
Speed more important than accuracy

HW/SW Co-design

Simulator Requirements
Provide sufficiently accurate metrics

Time and power estimation
Consider SW & HW effects

Accuracy limited by the early design flow step

As Fast as possible
Close to native, functional execution
Instruction Set Simulators (ISS) too slow

Intermediate solution required

Fast simulation technique
Native co-simulation

Virtual HW platform model
Model the architecture and HW functionality

Both functional and performance effects

No Processor model included
Native execution of annotated SW code

Annotate SW with time and power information
Requires a RTOS model

Minimal SW annotation overhead required

Improvements needed
Previous work on SW native modeling

Effects of the processor core
Time/Power metrics

SW platform
Operating System model, middleware, drivers, …

Caches
Instruction cache misses solved
Lack of data cache models

Fast simulation technique

• Replace ISS
• Add Performance
information to SW code
- Instruction execution
- Bus accesses

· I/O (RTOS)
· I-Cache misses

Cache modeling
Common ISS data cache model

Based on memory access traces
Native simulation

Address traces are not directly available
Required a mechanism to produce the traces

Detect data accesses
Obtain data addresses

Instruction-cache modeling
Solved in GLSVLSI’10

J. Castillo, H. Posadas, E. Villar, M. Martínez:
“Fast Instruction Cache Modeling for
Approximate Timed HW/SW Co-Simulation”

Solution not valid for data cache
Spatial locality of instructions
Source-code instructions only once in memory
Instruction address know in compilation time

Instruction-cache Modeling
Data structure with cache line information
declared in the SW code

struct icache_line {
char num_set;
char hit;

}

while (a){
static icache_line line= {addr%8,0};
b= c+d[a];
c += 2;
a -= 1;
if(!line.miss) insert_line(line);

}

Source Code

Cache miss

insert_line(icache_line *line) {
icache_line *victim;
victim = get_victim_line(line->set);
if (victim != NULL) victim->hit = 0;
line -> hit = 1;ç
bus_model_transfer(line);

}

Data cache annotation process
Cache effects

Mixed static/dynamic solution
Add marks to the SW code

Analyze the code with a grammar
Extract data accesses
Include cache annotations

Simulate

Obtaining data access addresses

Absolute addresses in host != addresses in
target platform

Target platform address obtained from corrected
native ones

Data storage order is specified by
Linkage order
Order in which variables are declared

Using the same compiler front-end and the
same linkage order, the order of the variables
within each section is maintained.

Obtaining data access addresses

Ensure host data have same size than in target
Source code is modified using equivalent data type

Different data types stored in different sections
E.g. ELF format

Global variables in “data”, “rodata” and “bss” sections
Local variables in the “stack” section
Dynamic data are stored in the “heap”

Sections start in different address in host & target
Relative addresses within each section are correct

Data addresses corrections

Change the base address of the variable
Identify the section of the variable from his address
Subtract to the address the base of the section in the
host
Add base address of the same section in the target.
Host addresses from elf format, “/proc/self/stat” &
“/proc/self/maps”
Target addresses provided by the designer.

Detecting data accesses

Variable reads/writes detected in the grammar
A variables used in the code -> load/store
A write is performed when

Variable is in the left side of an equal expression (=, +=…)
when there is an operator such as ++ or --.
For arrays, the write access modelled corresponds to single
element access, not to the entire array.

Arrays and pointers imply multiple accesses
Array index is a variable
Multiple indirection levels

Annotating accesses in code

How: Modeling data cache accesses
dcache_read(void *address)
dcache_write(void * address)

Where:
Accesses inside basic blocks annotated at the end of the block

Control operators that modify the data
E.g. v[i++] requires checking v[i], not v[i+1]

a?b:c operator is analyzed as a control statement
Accesses in control statements require specific
annotations

Fast Data-Cache Modeling

Instruction Set
Simulator

Addresses

Search in
 the cache

Provoke
miss

Update
cache

HW Platform model

Cache model

Annotated SW code

AddressesSearch in
 the cache

Provoke
miss

Update
cache

HW Platform model

Cache model

Fast data-cache model

Create an array with all possible cache lines
Complete memory: 2^32 addresses
Line size: e.g. 32 bytes

Total lines: 2^27

Use a bit to indicate is line is in cache or not
Array of 16Mbytes for cache

Checking
#define CACHED(addr) mem[(addr>>8)]&1<<((addr>>5)&7)

if(CACHED(&variable)) dcache_insert_line(&addr);

Data cache model

Search a data in the cache
Round robin remplacement
Check the bit dirty

Data cache model

Data cache model like
ISS models

n rows one for each line
that can accommodate the
actual cache
two columns

tag cache line
bit dirty

int cache[dcache_size/line_size][2];

Data cache model
A configurable data cache model has been implemented
Parameters to configure:

total size (dcache_size)
degree of associativity (assoc)
line size in words (line_size)
word size (word_size)

number of lines (n_lines=dcache_size/line_size)
number of sets (n_sets=n_lines/assoc).

This model is only for simulate misses and hits in the
cache, so the data are not stored.

Test and Results

Examples checked:
Simple examples
C implementation of 12.2 Kbps GSM Vocoder

Target processor ARM920T
Data cache size: 16KB
64-associative
Line size: 32 bytes

Test and Results

Main source of error:
Number of registers saved in function calls
Error compensated in large codes

Comparison in simulation speed

Test and Results

GSM Vocoder
ISS: Skyeye

Conclusions

Data cache effects can be accurately
modeled in native execution
Data accesses can be obtained analyzing
the code with a grammar
Native addresses can be used

Ensure data type sizes are valid
Adjust the base address of each section

	Technique for obtain data address for model a data cache in native source-code HW/SW co-simulation
	Index
	Introduction
	Simulator Requirements
	Fast simulation technique
	Improvements needed
	Fast simulation technique
	Cache modeling
	Instruction-cache modeling
	Instruction-cache Modeling
	Data cache annotation process
	Obtaining data access addresses
	Obtaining data access addresses
	Data addresses corrections
	Detecting data accesses
	Annotating accesses in code
	Fast Data-Cache Modeling
	Fast data-cache model
	Data cache model
	Data cache model
	Data cache model
	Test and Results
	Test and Results
	Comparison in simulation speed
	Test and Results
	Conclusions

