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Network-on-Chips (NoC)

Network-on-chips (NoC) : a scalable and modular solution for
multiprocessor system-on-chip (MPSOC) design.

Traditional bus based multiprocessor system

NoC based multiprocessor system
]
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. Advantages of NoC : scalability / latency, power consumption /
throughput / reliability etc.

UNIVERSITY OF



Application-specific NoC

 NoC designed given a target application domain
— The application is characterized by a given communication task graph (CTG).

— Traffic information (communication pairs and volume) are obtained through
profiling.
— An example task graph and tile mapping for VOPD (Video Object Plane Decode)
application:
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Design Challenges for NoC

« Design constraints and objectives :

— Energy and power consumption
— Latency and throughput

— Bandwidth requirement

— Hardware implementation etc.

o Temperature and peak power have become the dominant constraints
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Application-specific NoC Design Flow

Task scheduling
and allocation

Mapping and
Floorplanning

[

Energy /bandwidth
/ thermal aware
placement [2]

Energy aware
task
scheduling/mapp

ing [1]

Routing design
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[1] D.Bertozzi et.al “ NoC synthesis flow for customized domain specific multiprocessor system-on-chip” IEEE Transactions on Parallel and
Distributed Systems.16(2), pp.113-129, 2005
[2] H.Jingcao et.al “ Energy- and performance- aware mapping for regular NoC architectures” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 24(4), pp.551-562, 2005
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Previous Work

* Network-on-chip routing algorithm design:
— Fault tolerant routing [3]
— Bandwidth aware routing [4]

— Limitations: temperature and thermal issues are not taken into
consideration

e Thermal-aware NoC routing :
— Ant-colony routing algorithm [5]
— Thermal-region based routing [6]

— Limitations: Generic routing algorithm is used; complex control schemes
In [5]; deadlock avoidance issue in [6]

[3] D.Fick et.al “ A highly resilient routing algorithm for fault-tolerant NoCs” In Proc. DATE, pp.21-26, 2009

[4] M.Palsi et.al “Bandwidth-aware routing algorithms for networks-on-chip platforms” IET, Computer & Digital Techniques. 3(5).
pp.413-429, 2009

[5] M.Daneshtalab et.al “NoC Hot Spot minimization Using AntNet Dynamic Routing Algorithm” In Proc. ASAP; pp. 33-38, 2006
[6] L.shang et.al “Temperature-Aware On-chip Networks” IEEE Micro. 26(1), pp. 130-139,2006
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Adaptive Routing

Deterministic routing : only one path provided for every
communication pair

— Path 1 ,Path 3 and Path 5 are provided ( XY routing )

— Simple but may introduce congestion and hotspots

Adaptive routing : several paths dynamically selected within the
router

— Multiple paths can be used for routing
— Distribute traffic more evenly

<

e - o) © Adaptive and minimal path routing is
‘ PR ([FETDE adopted in this work :
Path 1 ath — Reducing hotspot temperature
P3 P4 P5

Path 5 — Maintaining the latency and throughput
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A Motivation Example

* Routing algorithm can be exploited to reduce the hotspot
temperature
— Communication network consumes a significant power budget (e.g. 39% in

[8]) Communication graph

@ ° @ Two strategies of routing implementation
Communication Path used in Number of packets sent over the path
pair routing Strategy 1 Strategy 2
e @ (uniform traffic | (allocating traffic
distribution)

non-uniformly)
2x3 NoC Mesh Topology P3to P1 P3->P4->P1 500 400
= P3->P(->P1 500 600
PO P1 } P2 P1 to P5 P1->P2->P5 500 850
Path 2 S P1->P4->P5 500 150
P4to PO P4->P3->P( 500 900
P4->P1->P0 500 100
Path 1 Path 4
P3 P4 P5
Path 5 Temperature profile simulation by Hotspot 5.0
Strategy 1 Strategy 2
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Overview of the Proposed Application-specific

Routing Algorithm

Application Specificé
. Design input :

Task graph / scheduling
and allocation results

!

Building Channel
Dependency graph
(CDG)

Cycle Removi+g Algorithm
for deadlockyavoidance
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(c) Application specific and deadlock
avoidance path set finding
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Deadlock Free Path set finding algorithm

« Using application traffic information can improve the adaptivity

Communication ‘

Graph \ Topology Graph \ Total minimal paths: 18

Application specific :16
Westfirst :13

Northlast :14
Negativefirst :15

Oddeven :14
Application Channel Dependency Graph Channel Dependency Graph (CDG)
(CDG)
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Deadlock Free Path set finding algorithm

e Here we use an application specific and deadlock free path set
finding similar to that used in [7]:
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Circle removing algorithm

Channel Dependency Graph (CDG)

SRR CLITMILEEIEERD Moo e ey e e T S Step 3: Removing edge to break cycles
— .in Strongly connected components __ 4
amm 0N N [ |
Deadlock free Path set | = /' \ = v/ V\ Al
|_3 0 L14i iL03 L4 1} |

[7] M.Palesi et.al “Application Specific Routing algorithms for Network on chip” IEEE~Transactions-on Parellel and Distributed
Systems. 20(3), pp. 316-330, 2009
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Deadlock Free Path Set Finding Algorithm

« We modified the cost function from [7] :

— Maximize the flexibility of re-divert traffic to even out the power

distribution
1 1 | @ ()]
MaxX e = Max =— ach = MaX — ,BVV (C) X =
C |c§ |C Ié |D(C)|

C: the set of communication pairs in the application

C. one communication pair

B # of paths provided for c
# of total paths existed in network

- adaptivity of the communication pair c

c

o . average adaptivity of the communication

Sedge - the set of edges to be removed in the channel dependency graph (CDG) to break cycles

d(c) :set of all minimal paths for communication ¢

®. (c) :setofall minimal paths for communication ¢ after edges in Sedge being removed

edge
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Optimal Traffic Ratio Calculation

* Router energy consumption model:

Canonical Router Pipeline in NoCs

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
Buffer Read . C Rout;ntq Switch I Switch - Link
(BR) " °m('°R%f' . Allocation (SA) | Traversal (ST) 7| Traversal (LA)

AE,

Energy consumption for ‘

routing a single packet
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Forward a single flit
Buffer read and write

f

Packet size

N

Routing computation

Output port selection

Wormhole head flit



Optimal traffic ratio calculation

e Problem formulation for optimal traffic ratio :

— Variables: r(1, ], k) -- the ratio of using the kth path for sending packets
between tile 1 and tile |

r(0,5,1)

Three deadlock free paths are available for PO->P5:
Path 1: PO->P1->P2->P5
Path 2: PO->P3->P4->P5
Path 3: PO->P3->P4->P5

- The path (a, b, k) passing through tile

- Tileenergy: £ =E_,+AE, ,x3 r(a.b,k)x p(a,b)
T

N

Traffic rate from source a to
destination b

(]
THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY



Optimal traffic ratio calculation

LP Problem formulation for optimal traffic ratio:
— Objective function: obj = min(max(E.))
— Problem constraints:

— Traffic splitting constraints : Summation of all the traffic allocation
ratios between a given pair (i, j) should equal to one.

LI,]

Zr(i, J,k)=1 V(,j)eC

k=1

r(i, j,k)=0 Vi, je[LN] k<L,

— Bandwidth constraints : the aggregate bandwidth should not exceed
the link capacity

Z r(a’ b’ k) X p(a’ b) X Spacket_bit < C
T -

T i




Converting and Combining the Path Ratios

- Routing tables are used in the routing
— routing decisions are made locally within the router
— for minimal path routing , at most two candidate ports are available
— the path ratios are converted into the local probability stored in the

routing table for output port selection

— Two types of routing table formats
» Source destination pair

» Destintation only

Path 1

(]
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PO P1
Path|2
P3 P4 p——or
\ 7/ \ /
AN
P6 P7

P2

PS5

P8

Routing table format in P4 (source-destination pair)

ratio

Source id Input port | Dst id O;;E:t
Path 1 0 W 8 S P1
Path 2 0 W 8 E P2
Path 3 3 W 8 E P3

Routing table format in P4 (destination only)

ratio

Output
Input port | Dst id port
Path 1 W 8 S P1
[ Path 2 Rl E [
W 8 E P2
L _Path3

—d
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Router Microarchitecture

e Qutput selection hardware design

Outport_1_E

_valid

Output port

ckecker
Outport 2 E

I
I
I
l Dutport_1_E_
I
I
I

Qutport_:

Outport_1 [ ]
Backpressure_1 :1:}

Outport_2

Outport_East

Mux 1

Backpressure 2

Port_ratios

CLK | LFSR I arator

Pseudo Random number

Sel

>=

Comp

J Only one output port available

,bypassing other stages

If (output_1 and output_2 available )
7 = output of LFSR
If 7 <p(o1)
return o1
else
return 02
If (only one port available)

return the available one

— A pseudo random number generator using linear feedback register
(LFSR) is employed

— If one output port is not available for routing due to limited buffer space
etc. , the back pressure signal will disable the corresponding port from

{ reroe ocsSelection
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Experimental Results

e Simulation environment setup

— A C++ program is developed for the thermal-aware routing algorithm
— A cycle accurate, flit-based NoC simulator,extended from Noxim, is used

for simulation

— Both synthetic traffic and real benchmarks are used for the simulation

« MPEG4, VOPD, MMS

e Adaptivity comparison

— 20%-30% more paths are
available by consideration the
application traffic information

— Higher adaptivity will help to
distribute the traffic more
uniformly

THE HONG KONG UNIVERSITY OF
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Routing Adaptivity
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Latency Simulation- Synthetic Traffic

Random traffic

300 4
-+ West first routing
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Peak Energy Simulation- Synthetic Traffic

Transpose-1 traffic

I Vst st routing
[ Morth last routing

Random traffic
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Peak Energy Simulation- Real Benchmark Traffic

Normalized Peak Energy
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In average, 16.6% peak energy

reduction can be achieved
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Peak Energy Reduction with Different PE/Router
Ratios

« Tile’s energy depends on both the routers and the processing

element

— We evaluate the effectiveness of the routing algorithm of reducing the
_ Average processor energy

peak energy when the energy ratio r varies.
Average router energy
Peak energy reduction

Synthetic Traffic Uniform random Hotspot-center Transpose-1 MMS-1 VOPD Average

Average Energy ratio (r,) | vs. XY vs. OE vs. XY vs. OE vs. XY vs. OE vs. XY vs. OE vs. XY vs. OE vs. XY vs. OE
0.67 17.4% 12.8% | 15.7% 17.6% 15.6% 17.9% 17.7% 11.8% 16.5% 28.9% 16.6% 17.6%
1.00 15.7% 15.3% | 14.4% 16.2% 13.3% 14.2% 15.7% 10.4% 12.3% 23.6% 14.3% 15.7%
1.67 10.6% 8.6% 12.3% 14.0% 11.2% 13.8% 10.6% 6.5% 9.3% 17.7% 10.9% 12.0%
2.00 11.9% 9.3% 11.6% 15.0% 11.1% 13.8% 10.6% 6.5% 9.3% 17.7% 10.9% 12.0%
2.67 9.4% 7.7% 10.2% 13.0% 8.9% 11.1% 10.4% 7.0% 7.6% 14.8% 9.3% 10.5%
3.00 8.8% 7.0% 9.6% 10.9% 8.8% 10.6% 9.7% 6.5% 7.6% 14.2% 8.9% 9.7%
3.67 8.1% 6.5% 8.7% 9.9% 7.8% 9.2% 7.9% 5.2% 7.1% 13.0% 7.9% 8.6%
4.00 7.9% 6.1% 8.3% 9.4% 7.0% 9.0% 7.3% 4.7% 6.5% 12.0% 7.4% 8.1%
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Conclusions

In this paper, we propose an application-specific and thermal
aware routing algorithm for network on chips.

Given the application traffic characteristics, a set of deadlock
free paths with higher adaptivity is first obtained for routing.

A LP problem is formulated to allocate the traffic properly
among the paths.

A table based router is also proposed to select the output ports
according to the ratios

From the simulation results, the peak energy reduction can be
as high as 16.6% for both synthetic traffic and industry
benchmarks.
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