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Fixed-point Representation @

® Fixed-point revival: FPGAs, reconfigurable computing

® Q — [IB].[FB]

® (B =# of integer bits Sffe)ﬁﬁff;iigtn

® FB =# of fractional bits (IB, FB)

® Wordlength =1B + FB /\

® |[B —> Range analysis

® FB—> Precision analysis Range Precision

—
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Range analysis

An important task in DSP circuit synthesis

> Allocate integer bit-widths (IBs)

» Issue: Over- or under-allocate bit-widths

» Too few bits cause overflow, too many are costly
>

Exact ranges lead to the smallest bit-widths and a
reduction in the circuit area and delay
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Background

e Dynamic Methods: simulation-based

e Low efficiency

e Static Methods

>

>

Interval Arithmetic (IA): coarse results
Affine Arithmetic (AA): tighter ranges than IA

An interval (X mim Ximax]  Xa = Xo + X1

Xmax T Xmin o Xmax — Xmin

2 S 2

xD:

The intermediate signal or the output is represented as a
first degree polynomial: Y4 = Yo t Y1&1 + Y282 o + 85
&1, E2,.--Ebolic uncertain variables , lie in the range [-1, +1]




Range: Metrics and Goals

e Error Metrics

» Error bound E: the largest difference between the exact

and the obtained ranges

obtained range

» Errorratio: e, = (

exact range

— 1) * 100%

e Goal: -find the smallest value of E or e,
-cannot underestimate the bit-width

Simulation

Under-allocated
Bit-width
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Exact
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Time



Example: IA and AA

Datapath z=ab+c-b

c=-22 a=[4, 10] b =[-1, 2]
Input
rariables
variables E = _31_(_34):3
| du=[-10, 20] S
dr=[-10, 20] —1 4+ 34
LD - Cr1 = (—4 +31° 1) *100%
.. —[-32. 2] [nten_'nedlate
e,=[-32. -2] variables — 2290
e.~=[-35, -2] < — £4£.470
———————— e e, 4 =11.1%

Output variable

Zen=[-31, -4] z,=[-34, -1] z.,=[-34. -4]
» Range by AA is tighter than that by IA
» e and zrequire 7 signed integer bits by IA and AA.

However, 6 bits suffice for their exact ranges, so |IA and AA
cause additional hardware area




Improving Range Analysis @

e Correlation is a major cause of overestimation

e Two correlated variable might not reach their
maximum or values at the same time

e handling the correlation becomes a key task in range
analysis

e Correlation in two monomials means that if the
value of one monomial changes, the other will
follow the change

e Example:

z=ab + c - b exhibits correlation

- <- ab and -b both include variable “b”




Applying Arithmetic Transforms )\\&

e Arithmetic Transform (AT): useful to explore precision
e Definition:

1 1 1
AT(f) = y y y (Cigiyoi, * X X5 X))

e If Xand Y are unsigned input factional numbers
represented by 2 and 3 bits, the polynomial is:

AT[f(X,Y)] = AT(2X* + Y*) = 2AT(X?) + AT(Y*)

=2 (Diz 27" x)* + (Uhep 27V y)?

= 0.25xy + 0.5625xy x5 + 0.03125x; + 0.25y, + 0.25y, v,
= 0.125y,y, + 0.0625y; + 0.0625y,y; + 0.015625y,
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Proposed Solution }%

® The model of the proposed algorithm

No correlation Range
1A -
Datapath Refinement
description - / H IB
P e I allocation
- —> AA ——— AT )
Correlation N P Range

e The algorithm invokes different methods to handle a datapath
eDistributes correlation to AA and AT for the two-step processing

eSMT-based method is time consuming, as it invokes underlying
exhaustive engine pretty much all the time to refine initial IA ranges

Coarse range Refinement

Datapath A \ / - \\ / IB
description I ‘\* SMT , » allocation
~ - Range




Range Analysis - Details

® Takes the polynomial

representing a datapath
(Step 1)

Retrieve polynomial v
Description Quantize uncertain
variables in AA 6

Y expressions

Get AA expression

Confirm

Y

Invoke the

conversion

algorithm

A

y

7

-> generates AA expression

(Step 2)

e If no correlation, IA is used

Range )
obtained corelation? i | 8 to compute the exact range
| -> bit-widths determined
Dotle <225 Range obtained | (Ste PS 4 and 5)
vy 5 Y
I;Altllsvciztti d;:;)i;gl? «—| Allocate bit-width | 10

e Otherwise, uncertain variables are quantized in the AA expression (Step 6)
and the conversion algorithm is invoked to obtain AT (Step 7)

e Then the branch-and-bound searching algorithm is applied to find the
upper and the lower bounds, and estimate the bound intervals

e Finally, the IBs of the datapath are allocated

(Step 8)
(Steps 9 and 10)




Applying the Scheme }%

e Example: Consider only primary output z=ab+c-b
Zy, = e, —by, =—19+ 1.5 + 9¢, + 4.56,¢6
® ¢&iand €2 belong to [-1, 1], which can be represented as a
signed fractional number:
sign | 0.5 | 0.25 | 0.125

Xg X1 X2 X3

e £ and & are quantized uncertain variables to replace ¢: and ¢:
e m, and m, represent the number of quantization bits

AT(&) = (1 —2x,) X 274x,
AT(8;) = (1= 2y9) X2, 27"y,



Finding Exact Range f@

® As smallest integer unitis “1”, the error between the exact
value and the calculated value contained:
|z,, —z| <05 =>z—-05<z,<z+05 [
e The exact output z_, is in [z-0.5, z+0.5] based on the calculated
value z, so the approximation error will be limited to 1
e Basedon Egn. (1),
|(1.5e; — 1.5&;) + (9g9 — 9&,) + (4.5e,8; — 4.58,8,)| < 0.5 (2
e In order to satisfy Eqn. (2):
|(1.5¢; — 1.5&;)| + |(9¢e, — 9&,)| + |(4.5e,; — 4.58,8,)| < 0.5

= |1'5§1|E?’T + |g§2|E?"T + |4'5§1§2|E?’T < 05

(3)
where |1.5& |+, 19&,|.,» and |4.5&, & ., are error bounds of
monomials




Finding Max Error f@

® Address each monomial individually (assume m;=m,):

|4.58,8,|, <05 = 45[1-(1-2"""1)2] <05 @
eThe reason to choose the monomial +5¢:23s the first one is
that it has uncertainty degree “2” while for the remaining
monomials  1:nd  gzthis degree is one

eThe largest approximation error is 2-m*1
e The maximum error is represented as 4.5[1-(1-2""*1)?]

eThe value of m to be 6 which means ¢fand #oth require at
least six bits to satisfy Eqn. (4)

T



Exploring Fractional Parts f@

® Maximum fractional value represented by six bits is

0.96875, and by substituting & = & =0.96875, real value of

4.5&,&,is4.5 * 0.968752=4.223
e The maximum error is 4.5 —4.223 = 0.277 for the monomial 4.5&;¢&;
e The remaining error spaceis 0.5—-0.277 =0.223, so

|1 1.5 | o + 1985 |, < 0.223 (5)
e Next, we explore the monomial “1.5&.”,
1.5 #27™*l = (0.223
e £ must be expressed using at least four bits, so to
satisfy Eqn. (4) and (5), & is determined 6 signed bits.

max(1.58,) = 1.5 % 0.96875 = 1.4531

‘ 3 —




Bound on Error Sum

The obtained maximum errors for the monomial 4.54:&; and
1.5¢ are then 4.5 -4.223 =0.277 and 1.5-1.4531 = 0.0469
The remaining error space: 0.5 -0.277 -0.0469 =0.1761
Final monomial 98, must satisfy error bound:
9 x27 ™%l - 0.1761 (6
Obtain m, = 7. In combination with the bit-width of 6 in the
monomial 4.5%,&,, & is determined 7 bits
The error bound for the monomial 9&, =9 x 2771 = 0.1406
The maximum error of 4.581&; is re-calculated as:
45[1—-(1—-2"*"H«(1-2"""1] =0.2087
Finally, the error bound for all monomials is 0.3962 as:

11.52,],,,. = 0.0469

Error space=0.5

SRS

198,|,,. = 0.1406

452,2,|

grr

=0.2087 |1.5¢,],,, =0.0469

93, =0.1406
|

|4.58,%,|,,. = 0.2087 !

|
Obtained error bound=0.3

|
962



Applying AT

e AT representation of z is determined by expanding &, and &
into their bit-levels:

AT(2) = =194+ 1.5(1 — 2x0) X7 1 27 x; + 9(1 — 2y) X8 _, 27 %y,
+4.5[(1 — 2x0) 21 27 % |[(1 — 2y0) Toci 2 %y | -

e By invoking the conversion algorithm and the branch-and-
bound searching algorithm, the upper and the lower bounds
for the scope of z, can be computed as -4.4 and -30.7

e The exact upper and lower bounds belong to the following
intervals

{ Zox upp = —44 +0.3962 = [-4.7962,—4.0038]
Zex 1ow = —30.7 +0.3962 = [-31.0962, —30.3038]

e The final obtained range is [-32, -4]. The error bound E=1 and

the error ratio is e= 2.86%. Both two error metrics are

.oitimized compared to that of AA (1, 2.86%)
16




Experiments: Benchmarks

> Filter polynomial: F=4X*+16X3+ 20X?. The implementation has four
intermediate variables (X [220, 10]) :
q,=X* 4,=q,X q3=q,X q,=4q,%16q; z=q,+20q,
» Hermite polynomial:
Hc(x) =z =x°—15x*+ 45x“ — 15
= x%(x*(x*—15) + 45) — 15 x € [—6,10]
The implementation contains following intermediate signals:
d. =x? aq,= ql(q1'15) ;= q1(q2+45) Z=(; -15
> Dickson polynomial: D,(x, a) = x* -4x%a + 2a° = x*(x*-4a) + 2a? (assume x
[-50, 50], a [0, 40]). This benchmark includes two word-level input
variables: g,=x? q, =q,-4a d;=9.9, q,=2a> Z=q,tq,
» Multivariate Datapath: F= 30A%— 60AB - 40BC
(A [0, 30],B [#),40]and C [#0, 30])
q,=30A? q,=60AB q;=40BC q,=9,-9q, Z=q,-Qq;

im




Experimental Results

Case Out- Range Bit Error Ratio (%) Time (s)
put AA SMT Ours AA | SMT | Ours | AA | Ouws | Sm | SMT | AT | Ours
g [-350, 400] [-1,401] [0, 400] 10 0] 9 |85 0
Image g | [-8000,7750] [-8001, 1001] | [-8000, 1000] 14 IC I S T A 0
Filter gs | [-158750,160000] | [-1,160001] [0, 160000] 19 Qe 18 |99 0 220 156 | 261 | 18
ge | [-511000,534000] | [-112,512001] | [-109512001] | 21 00 | 20 |9 | <001
r | [-511000,542000] | [-2,520001] | [-1,520001] 21 00 | 20 |9 | <001
g1 [-02, 100] [-1,101] [0, 100] § ¢ | 7T |9 0
0 [-0036, 8948] [-60, 8502] [-38, 8301] 13 e | 15 | 100 | <001 |932 | 527 | 835 | 337
Hermite | g; | [-865820,863828]) | [-42,854301]) | [-40,854501] 21 e |2 103 | <001
r | [-803835,803813] | [-37,834400] | [-35, 834486] 21 e |2 103 | <001
g [-2500, 2500] [-1,2501] [0, 2500] 13 3o | 12 100 |0
0 [-2660, 2380] [-162, 2582] [-160,2580] | 13 3e ] 13 |9 0
Dickson | g; | [-6450000,6430000] | [-6401,6430003] | [-6401,6430001] |24 | Mo | 24 [ 008 [ <001 | 163 |14 | 213 |513
g [-2800, 3200] [-1,3201] [0, 3200] 13 Be | 12 (875 | 0
r | [-6452800,6433200] | [-6403,6433203] | [-6401,6433201) | 24 | Mo | 24 | 908 | <0.01
g [-25650, 27000] [-1,27001] [0, 27000] 16 6o | 15 |8 0
Mults- 0 [-37000,72000] | [-48001,72001] | [-48000,72000) | 18 8« 18 |75 |0
varigte | g [-28000,48000] | [-16001,48001] | [-16000,48000] | 17 e 17 | 188 | 0 »500 | 19 | »500¢) 9.2
polyne- | g, [-82500, 600007 | [-43002,60002] | [-43001, 60001] | 18 7] 17 | 357 | <001
mial Z | [130500,97000] | [-93004,76003] | [-93001,76001] | 18 8o 18 | 340 | <001




Analysis of @

Experimental Results

e Error ratios of our method are far smaller than that
of AA
e AA may require one additional bit for representing

some signals, which adds to the implementation
costs

e Simulations take much longer for datapaths beyond
one

SMT often needs a long time for computation
e Execution time of our method is acceptable both for
high order and multivariate polynomials

T




Area and Delay Results

Circuit- Area (Slices) Delay (ns)

Qurs AA Saving Qurs AA Saving
Filter 686 740 7.3% 23.5 254 7.5%
Filter 725 768 5.6% 24.6 26.2 6.1%
Filter 756 787 3.9% 254 26.8 5.2%
Hermite 809 870 7% 31.3 33.5 6.6%
Hermite 845 897 5.8% 32 33.9 5.6%
Hermite 876 919 4.7% 324 34.1 5%
Dickson 532 578 8% 274 29.9 8.3%
Dickson 557 596 6.5% 279 30.2 7.6%
Dickson 588 623 5.6% 28.7 30.7 6.5%

e With increase in input ranges, the saving ratio decreases because the
auxiliary area caused by additional bits is diminishing

e Our method can achieve the optimized implementations with the area
smaller by around 4% to 8%, and decrease delay by around 5% to 9%.

e Calculation time of AA is around 1 second, while our method requires at

most 10 — 50 seconds. Increase in computation time is justified as the

obtained ranges are far tighter




Conclusion and Future Work }@

e Range analysis can directly impact the overall design cost and
performance

e Previous methods have disadvantages of low efficiency and
coarse bounds.

e Coarse ranges may generate unnecessary bits, costly circuits

e This paper propose a new static method to calculate ranges

e Method handles correlation for efficient, exact range analysis

e It combines AA and AT to find ranges efficiently

T
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