
Managing Complexity in
Design Debugging with

Sequential Abstraction and Refinement

Brian Keng and Andreas Veneris

University of Toronto

ASPASP--DAC 2011DAC 2011

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Motivation

Functional Verification and
Debug are major problems

Exponentially more costly to find
bugs in silicon
Functional errors responsible for
over 60% of re-spins
Trend: Two verification engineers
per single designer!

What’s the biggest bottleneck?
Debug: Takes up to 60% of total
verification time

2

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

The Debugging Bottleneck

Functional Debug
Localize errors detected
during verification

Bottleneck:
Manual process
Designs are getting
bigger and more complex
Consumes 5-7 months of
design time per cycle

How do we address it?
Automation!

3

...
always @ (*) begin

if(reset)
rd6[0:31] <= 32'b0;

else if(read_active_6)
rd6[0:31] <= do_6[0:31];

else if(rck_6)
// bug orig: {32{1'b1}};
rd6[0:31] <= 32'b1 ;

end
...

...
always @ (*) begin

if(reset)
rd6[0:31] <= 32'b0;

else if(read_active_6)
rd6[0:31] <= do_6[0:31];

else if(rck_6)
// bug orig: {32{1'b1}};
rd6[0:31] <= 32'b1 ;

end
...

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Automating Debug

Automated Debugging
Automatically locate places (i.e. suspects) in RTL that
could fix failure

Algorithms
Simulation-based, BDD-based, SAT-based etc.

How can these factors be managed for:
Larger circuits?
Longer traces?
Multiple Errors?

4

Complexity = (design size * # cycles) # errorsComplexity = (design size * # cycles) # errors

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Previous Work and Contributions

Previous Work
[Safarpour et al.,

TCAD09]

Contributions

Abstraction • Simulated values
(Neither over/under-

approximation)

• Simulated values to
generate an under-
approximate model

Refinement • Solutions for module
refinement

• UNSAT cores for time
+ module refinement

Solutions • Over-approximation
of solutions

• Exact solutions

Error
Complexity

• Requires increased
error complexity

• No increased error
complexity

5

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Outline

Background
Automated Debugging
SAT-based Debugging
UNSAT Cores

Sequential Abstraction and Refinement
Experiments
Conclusion

6

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Automated Debugging

Erroneous circuit
Error Trace

Initial State
Primary Inputs
Expected Values

7

1

1

1 0 1 1 0 0

1 1 0 1

Error!
Output Mismatch

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

SAT-based Debugging

[Smith, et. al TCAD ’05]

1) Unroll
2) Error models (e.g. muxes)
3) Constrain initial state, inputs, expected outputs
4) Constrain number of errors (error cardinality, N)

8

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

1

1

1 0 1 1 0 0

1 1 1

SAT when N=1
{e0=1, e2=1, e3=1, e4=1}

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

UNSAT Cores

UNSAT Cores
Subset of clauses that are unsatisfiable
Proof of unsatisfiability

9

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

1

1

1 0 1 1 0 0

1 1 0

This path will
form an

UNSAT CORE

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Outline

Background
Sequential Abstraction and Refinement

Overall Algorithm
Abstraction
Module Refinement
Sequential Refinement
Comparison to Previous Work

Experiments
Conclusion

10

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Overall Algorithm

1. Generate initial abstract model
2. Solve abstract model
3. Analyze UNSAT core:

1. Exit if UNSAT core has no abstract clauses
2. Refine using UNSAT core, repeat step 2

11

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Abstraction

Abstraction:
Replace module constraints in SAT instance
with their simulated input/output values

Reduce size of SAT instance (design size)
Smaller run-time/memory

Abstract instance finds a subset of the
suspects of the original SAT instance
(Under-approximation)

Property holds even after refinement
No need to find previous found solutions
Incremental solving

12

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Abstraction Example

Replace module constraints with simulated
input/output values

13

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

1

1

1 0 1 1 0 0

1 1 1

0
1
1

0

1
1
1

0
0
1

1 0

1

1

1

0

0

1
1 1 0

Trivially
UNSAT

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Module Refinement

Refinement
Use UNSAT core to determine which modules to
refine
In next iteration, do not replace module constraints
with simulated values
Allows for refinement with the same error cardinality

Exit condition:
When UNSAT core does not contain any abstract
input/output values
Complete set of solutions without refining entire
problem

14

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Module Refinement Example

15

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

1

1

1 0 1 1 0 0

1 1 1

0
1
1

0

1
1
1

1

0
0
1

0

1

1
1

1

0
1

0

1
0

UNSAT
Core

SAT when e4=1

UNSAT
Core

SAT when
{e0=1, e2=1, e3=1}

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Sequential Refinement

Sequential Refinement
Only refine modules in time-frames that are in
UNSAT core
Allows fine-grain refinement across time
Smaller instances vs. many iterations
Use same exit condition as before

Refine windows
Refine all modules around radius r involved
with the UNSAT core

16

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Sequential Refinement Example

17

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

e0

e1

e2

e3

e4

1

1

1 0 1 1 0 0

1 1 1

0
1
1

0

1
1
1

1

0
0
1

0

1

1
1

1

0
1

0

1
0

UNSAT
Core

SAT when e4=1

UNSAT
Core

SAT when
{e0=1, e2=1, e3=1}Exit Condition:

UNSAT core does not contain
abstract input/output values

UNSAT
Core

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Comparison to Previous Work

Previous Work
[Safapour et al.]

Sequential
Abstraction &
Refinement

Abstraction Neither Under-approximation
Refinement Module Module/Time
Debugging

Engine
Any SAT-based

Exact
Solutions

No
(over-approximation)

Yes

Error
Cardinality

Requires increase No increase

18

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Outline

Background
Sequential Abstraction and Refinement
Experiments

Experimental Setup
Solved Instances
Number of Solutions
Module vs. Sequential Refinement

Conclusion

19

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Experimental Setup

Pentium Core 2, 2.66 Ghz, 8 GB ram
10 circuits from OpenCores.org and industrial
partners
Inserted in a typical RTL error

Wrong assignment, missing case statement, incorrect
operator, etc.

PicoSAT v913
Timeout: 3600 seconds
Sequential Refinement Window: r=20

20

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Solved Instances

21

* Suspect Refinement [Safarpour et al.]

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Number of Solutions

SAT-based Suspect *
Refinement

Module
Refinement

Sequential
Refinement

conmax1 0 3 3 20
fdct1 0 2450 8 8
fpu1 0 879 5 15
fxu1 24 1313 24 24
s_comm1 0 213 17 17
vga1 0 11 0 14

22

* Suspect Refinement [Safarpour et al.]

Sequential refinement returns solutions for all instances

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Module vs. Sequential Refinement

23

ASP-DAC 2011 Managing Complexity in Design Debugging with Sequential Abstraction and Refinement

Conclusion

Sequential Abstraction and Refinement
Finds exact solutions
Under-approximate abstraction
UNSAT core based refinement

Module refinement
Sequential refinement

Experiments
Returns solutions for 100% of instances
compared to 41% without the technique

24

	Managing Complexity in �Design Debugging with �Sequential Abstraction and Refinement
	Motivation
	The Debugging Bottleneck
	Automating Debug
	Previous Work and Contributions
	Outline
	Automated Debugging
	SAT-based Debugging
	UNSAT Cores
	Outline
	Overall Algorithm
	Abstraction
	Abstraction Example
	Module Refinement
	Module Refinement Example
	Sequential Refinement
	Sequential Refinement Example
	Comparison to Previous Work
	Outline
	Experimental Setup
	Solved Instances
	Number of Solutions
	Module vs. Sequential Refinement
	Conclusion

