
Facilitating Unreachable Code Facilitating Unreachable Code
Diagnosis and DebuggingDiagnosis and Debugging

HongHong--zu Chou and Syzu Chou and Sy--yen Kuoyen Kuo

KaiKai--hui Changhui Chang

ASPDAC
Jan. 27, 2011

National Taiwan University

Avery Design Systems

Motivation

Code coverage is an important metric in
design verification

Typically, it is performed using logic simulation with
constrained-random testbench

May miss corner cases and is not accurate

Formal code statement reachability analysis provides
proving capabilities

Code that is proven to be unreachable is called
dead code

Dead code is usually associated with bugs
Diagnosing the cause of problem can be challenging

[Chou et al., ASPDAC10]

2

Challenges in Unreachability Diagnosis

Engineers perform debugging using waveforms
Unreachability means no waveform is available
Engineers have to analyze nonexistent paths to
identify the cause of the problem

Automatic error diagnosis and repair methods
cannot be used

These algorithms require the “correct values” of
a signal to be known
Unreachability means there are no correct values
to be solved for

3

Our Contributions

A new symbolic simulation algorithm that can
explore nonexistent paths

“Liberated variables” give the algorithm the freedom
to explore new paths
Cannot be achieved using traditional
synthesis-based formal methods

Error diagnosis is then applied to analyzing the
symbolic condition to execute the target code

Key variables that contribute to the unreachability
will be identified
Suggested values to solve the problem is provided

4

Outline

Background – error diagnosis
Problem formulation
Common causes of unreachability
Unreachability diagnosis technique
Experimental results
Conclusions

5

6

Background - Error Diagnosis
1. To model errors: insert MUXes into the circuit
2. To limit the number of allowed errors:

use an adder and a comparator
3. Convert the circuit to CNF
4. Constrain inputs/outputs using

input vectors/correct output responses
[Smith et al., ASPDAC’04]

Error modeling Error-cardinality constraint

1

0

Problem Formulation

Given a testbench, a design, a list of
liberated variables and the target
unreachable code
Find a set of variables that contribute to
the unreachability
Also provide suggested values to solve
the problem

7

Common Causes of Unreachability

Hardware bugs
Conflicting conditions
Obsolete code

Design modalities
Testbench errors

Over-constrained rules
Reachability analysis limitation

Insufficient sequential depth

8

Modified Symbolic Simulation Algorithm
for Unreachability Diagnosis

9

When liberated variables are
accessed, a MUX is introduced
so that the variable has the
freedom free to take a new value.

This gives the symbolic
simulator the freedom to explore
previously-impossible paths.

Unreachability Diagnosis – Example

10

module example;
reg mode, clk;
reg [7:0] result, a, b;
always @(posedge clk) begin

if (mode == 0)
result= a + b;

else
result= a – b;

end
initial begin

mode= 0;
a= $random;
b= $random;

end

Unreachable code.
Target of diagnosis.

1. Select liberated variables:
mode, a

Unreachability Diagnosis – Example

11

module example;
reg mode, clk;
reg [7:0] result, a, b;
always @(posedge clk) begin

if (mode == 0)
result= a + b;

else
result= a – b;

end
initial begin

mode= 0;
a= $random;
b= $random;

end

1. Select liberated variables:
mode, a

2. Modify symbolic simulation
algorithm for MUX insertion
when liberated variables are
accessed

mode=0

result=a+b

mode= mode_sel ?
mode_free : 0

result= ((mode_sel ? mode_free : 0)
== 0) ? (a_sel? a_free : 0)+ b :
(a_sel? a_free : 0) - b

Unreachability Diagnosis – Example

12

module example;
reg mode, clk;
reg [7:0] result, a, b;
always @(posedge clk) begin

if (mode == 0)
result= a + b;

else
result= a – b;

end
initial begin

mode= 0;
a= $random;
b= $random;

end

1. Select liberated variables:
mode, a

2. Modify symbolic simulation
algorithm for MUX insertion
when liberated variables are
accessed

3. Since symbolic condition for
entering the else branch is
no longer false, symbolic
simulation will execute the
target code under condition:
((mode_sel ? mode_free : 0) != 0)

4. Unreachability diagnosis is
performed on the symbolic
condition to identify the select
signals to be asserted

mode= mode_sel ?
mode_free : 0

Unreachability Diagnosis - Example
Unreachability diagnosis is performed on
((mode_sel ? mode_free : 0) != 0)
A SAT solver is used to find a solution that can
satisfy the condition

In this example, mode_sel = 1 and mode_free = 1
Signal mode contributes to the unreachability

If its value is 1, then the code can be reached

Similar to traditional error diagnosis,
cardinality constraints are necessary

To narrow down the problem

13

Implementation Insights

Selection of liberated variables
Typically involves all design variables except
clocks and resets
Hierarchical approach can be applied

Narrow down the problem to a few blocks first
Then look into the blocks

Values returned for V_free are suggestions
on how to fix the problem

14

Implementation Insights

Shared select line/free variables can improve
unreachability diagnosis performance
For code that models hardware

Variables updated at the same cycle can share the
same select and free symbols
At the RTL, each variable is typically updated only
once at a clock

For testbench code
Select lines typically cannot be shared because a
variable may be updated many times at a time step

15

Experimental Results

DLX design from Bug UnderGround project in
University of Michigan

One of the few publicly available designs that
contain non-trivial dead code
Design contains 40 bugs, but 6 of them can never
be triggered
Goal: diagnose the causes of the 6 dead bugs

Two industrial designs were also used
A block in a multimedia chip
A block in a high-speed I/O interface design

16

Diagnosis Example
Bug descrption: if write to r7 is followed by ADD with
rt=r7 write to r14 occurs
Bug triggering
code:

17

RDwire = ((IR4[`op]==`SW) && (IR4[‘rt]==5’d7) &&
(RDaddr5==5’d7) && (IR5[`op]==`ADD)) ?
5’d14 : RDaddr5;

Diagnosis: DUV.IR2, suggested values to solve problem:
Variable DUV.IR2, at time 250 (posedge clk),
value= 32’b00000000000000000011100000001001;

rd=7
Variable DUV.IR2, at time 305 (negedge clk, #5),
value= 32’b10000000000000000000000000000000;

ADD
Variable DUV.IR2, at time 405 (negedge clk, #5),
value= 32’b10101100000001110000000000000000;

SW rt=7

Diagnosis result: ADD is an illegal OP
code. Correct instruction:
OP=`SPECIAL_OP with
subtype = ADD

DLX Result – Full Chip
Case Runtime Memory

(MB)
#Liberated
variables

#Diagnosis

Bug20 3m20s 637.36 217 1
Bug22 1m22s 504.95 216 7
Bug29 8m49s 601.92 217 24
Bug31 14m45s 815.19 216 5
Bug33 28m39s 1146.15 218 1
Bug34 28m48s 1146.35 218 1
CaseA 29m17s 897.93 215 8
CaseB 29m13s 887.22 215 8

18

CaseA and CaseB are unreachable due to over-constrained testbenches.
All other cases use properly-constrained testbenches and unreachability
is due to design bugs.

DLX Result – Buggy Module

Runtime is shorter and diagnosis is more accurate
Hierarchical approach can be useful

19

Case Runtime Memory
(MB)

#Liberated
variables

#Diagnosis

Bug20 45s 357.73 10 1
Bug22 43s 417.61 67 3
Bug29 4m52s 549.41 68 9
Bug31 8m1s 655 67 2
Bug33 13m26s 584.22 16 1
Bug34 13m24s 584.33 16 1
CaseA 7m14s 394.69 7 1
CaseB 7m31s 394.29 7 1

Industrial Case Result
Case Lines of RTL Runtime #Liberated

variables
#Diagnosis

DesignA 5074 1m34s 236 36
DesignB 8068 32m5s 1520 15

20

Diagnosis involving 2 variables were reported
for DesignA

Without our diagnosis, 27730 combinations of
variables need to be checked
With our diagnosis, 99.8% possible combinations
can be eliminated

Our diagnosis can narrow down the problem

Conclusions

Unreachability diagnosis is challenging
No counterexamples exist for debugging

A new symbolic simulation algorithm that can
explore nonexistent execution paths
Error diagnosis based on symbolic conditions
can identify the cause of unreachability
Experimental results show that our techniques
can successfully narrow down the problem

21

	Facilitating Unreachable Code Diagnosis and Debugging
	Motivation
	Challenges in Unreachability Diagnosis
	Our Contributions
	Outline
	Background - Error Diagnosis
	Problem Formulation
	Common Causes of Unreachability
	Modified Symbolic Simulation Algorithm for Unreachability Diagnosis
	Unreachability Diagnosis – Example
	Unreachability Diagnosis – Example
	Unreachability Diagnosis – Example
	Unreachability Diagnosis - Example
	Implementation Insights
	Implementation Insights
	Experimental Results
	Diagnosis Example
	DLX Result – Full Chip
	DLX Result – Buggy Module
	Industrial Case Result
	Conclusions

