An Optimal Algorithm for Allocation, Placement, and Delay Assignment of Adjustable Delay Buffers for Clock Skew Minimization in Multi-Voltage Mode Designs

- Introduction
- Motivational Example
- The Proposed Algorithm
- Experimental Results
- Conclusion

- In synchronous circuit design, all sequential elements in the design are synchronized by a unified signal – clock signal
- Ideally, clock signal should be reached to all sequential elements at the same time for its synchronicity
 - Practical issues
 - Different wire length
 - Different buffer characteristics
 - Achieving zero skew is still difficult!

Multi-voltage mode design

Whenever the power mode is changed, the delay of clock tree is also changed. How can we <u>simultaneously meet the skew constraint for every power mode</u>?

- Adjustable Delay Buffer (ADB)
 - We can change its delay dynamically
 - Changing delay value depending on the current power mode – simple and easy to use
- Problems
 - How many ADBs should be used?
 - Where should we place ADBs?
 - What delay value should be for each power mode?

- Related work
 - Y. –S. Su, W. –K. Hon, C. –C. Yang, S. –C Chang, and Y. –J Chang, "Value assignment of adjustable delay buffers for clock skew minimization in multi-voltage mode designs," *ICCAD*, 2009.
 - Only work using ADB for clock tree generation in multi-voltage mode designs
 - Optimal ADB adjustment value for given ADB positions
 - Finding ADB positions is still based on heuristics
 - Cannot guarantee minimum number of ADBs

- Introduction
- Motivational Example
- The Proposed Algorithm
- Experimental Results
- Conclusion

Violation!!

- Avoiding violation
 - Reconstruct clock tree which can adaptively minimize all clock skew under constraint for all power modes
 - Almost impossible
 - Using Adjustable Delay Buffer (ADB)
 - Insert ADB instead of normal buffer
 - Change delay of inserted ADBs depending on power mode
 - ADB insertion should be restricted because of high cost of using ADB

Clock skew of current clock tree at Mode -1 = 20 - 10 = 10

Violation!!

Violation!!

No Violation!!

- Traditional approach can find optimal delay assignment value for given ADB position
 - However, cannot check whether given ADB position is optimal or not
 - They found <u>ADB positions</u> in greedy manner
 - More comprehensive approach is still needed

- Introduction
- Motivational Example
- The Proposed Algorithm
- Experimental Results
- Conclusion

- Problem description
 - Given initial buffered clock tree \mathcal{T} , power modes, clock signal arrival time, and clock skew bound B
 - ullet Allocate ADBs and replace buffers in ${\mathcal T}$
 - Assign delay increment value to each ADB for every power mode
 - Clock skew bound constraint should be satisfied
 - Minimize the number of ADBs used

Clock skew constraint = 10

There exists at least one feasible adjustment value $LAT_v - LAT_2$

Clock skew constraint = 10

We cannot meet the constraints using current tree! – Case 3

- Summary of all cases
 - Case 1: $EAT_1 \ge LAT_v B$ and $EAT_2 < LAT_v B$
 - ADB2 is essential (cannot remove)
 - $\alpha_2 = LAT_v LAT_2$
 - Case 2: $EAT_1 \ge LAT_v B$ and $EAT_2 \ge LAT_v B$
 - ADB2 is useless (remove)
 - Case 3: $EAT_1 < LAT_v B$
 - Cannot satisfy constraint B
 - Relax the constraints or reconstruct clock tree

The flow of algorithm

We can remove ADB₆ (Case 2 for all power modes)

We have to retain ADB₃ (Case 1 at power mode 2)

We have to retain ADB₃ (Case 1 at power mode 2) We can remove ADB₄ (Case 2 for all power modes)

We can remove ADB₅ and ADB₇ (Case 2 for all power modes)

We can remove ADB₅ and ADB₇ (Case 2 for all power modes)

Clock skew constraint = 10

We have to retain ADB₁ (Case 1 at power mode 1 and 2)

We have to retain ADB₁ (Case 1 at power mode 1 and 2) We can remove ADB₂ (Case 2 for all power modes)

- Introduction
- Motivational Example
- The Proposed Algorithm
- Experimental Results
- Conclusion

- Experiment setup
 - System with eight 2.5GHz Intel Xeon CPU and 8GB memory
 - 45nm Nangate Open Cell library
 - Input clock tree is generated by using Synopsys IC compiler
 - Three ISCAS'95 benchmarks and three ITC'99 benchmarks partitioned into 6~10 power subdomains which can operates in two voltage levels 0.95V and 1.1V
 - Assumed that each ADB can be adjusted with a granularity of 10ps

Bench- marks	#FFs	#Bufs	Worst Skew (ps)	Skew Bound B	#ADBs [1]	#ADBs (CLK- ADB)	Red. of #ADB
s35932	1728	95	281.24	30 ps	60	55	8.33%
				40 ps	38	37	2.63%
				50 ps	20	18	10.0%
s38417	1564	85	292.24	30 ps	47	43	8.51%
				40 ps	29	27	6.70%
				50 ps	20	18	10.0%
s38584	1178	68	285.85	30 ps	44	42	4.54%
				40 ps	39	35	10.26%
				50 ps	27	25	7.41%

[1] Y. –S. Su, W. –K . Hon, C. –C. Yang, S. –C Chang, and Y. –J Chang, "Value assignment of adjustable delay buffers for clock skew minimization in multi-voltage mode designs," *ICCAD*, 2009

Bench- marks	#FFs	#Bufs	Worst Skew (ps)	Skew Bound B	#ADBs [1]	#ADBs (CLK- ADB)	Red. of #ADB
b17	1312	79	286.62	30 ps	26	25	3.94%
				40 ps	18	17	5.56%
				50 ps	15	13	13.3%
b18	2752	176	463.23	30 ps	118	109	7.62%
				40 ps	95	86	9.47%
				50 ps	71	67	5.63%
b22	583	46	326.19	30 ps	14	13	7.14%
				40 ps	12	12	0.00%
				50 ps	8	8	0.00%

[1] Y. –S. Su, W. –K . Hon, C. –C. Yang, S. –C Chang, and Y. –J Chang, "Value assignment of adjustable delay buffers for clock skew minimization in multi-voltage mode designs," *ICCAD*, 2009

Conclusion

- This work provides:
 - Optimal algorithm to solve problem of clock skew optimization using ADBs under multi-voltage design.
 - Finding a solution with minimum number of ADB allocation while satisfying the clock skew constraint for every power mode.
 - 9.27% further decreased number of ADBs compared to the existing algorithm.