
Low Power Discrete Voltage Assignment Under
Clock Skew Scheduling

Li Li1 Jian Sun2 Yinghai Lu1 Hai Zhou1 Xuan Zeng2

1Department of EECS
Northwestern University

2Department of Microelectronics
Fudan University

January 27, 2011

1 / 30

Power Optimization via Multiple Supply Voltage
Assignment

I Each gate has multiple choices of supply voltage
I Tradeoff between power and performance

I High supply voltage is assigned to timing critical cells to
guarantee performance

I Low supply voltage is assigned to other cells to save power.

2 / 30

Discrete Voltage Assignment Problem

I The problem of discrete voltage assignment has been studied
in various context, some of the previous works include:

Publications Approach Solution Type

Lee, ICCAD’06 Dynamic Programming Optimal

Lee, ICCAD’07 ILP Optimal

Qian, ISPD’09 Branch and Bound Optimal

Ma, ICCAD’08 Network Flow & Flooring Heuristic

Feng, ICCAD’09 LP & Dual Binary Search ε-approximation

I All the existing works only consider combinational circuits.

Clock skew scheduling can “steal” time from uncritical paths and
further reduce power!

3 / 30

Discrete Voltage Assignment Problem

I The problem of discrete voltage assignment has been studied
in various context, some of the previous works include:

Publications Approach Solution Type

Lee, ICCAD’06 Dynamic Programming Optimal

Lee, ICCAD’07 ILP Optimal

Qian, ISPD’09 Branch and Bound Optimal

Ma, ICCAD’08 Network Flow & Flooring Heuristic

Feng, ICCAD’09 LP & Dual Binary Search ε-approximation

I All the existing works only consider combinational circuits.

Clock skew scheduling can “steal” time from uncritical paths and
further reduce power!

3 / 30

Outline

Problem Formulation and Hardness Review

Optimal Solution for Relaxed Problem based on Network Flow

Min-cut Prune

Experimental Results

4 / 30

Outline

Problem Formulation and Hardness Review

Optimal Solution for Relaxed Problem based on Network Flow

Min-cut Prune

Experimental Results

5 / 30

Constraint Graph

I Given a sequential circuit, a directed graph G = (V ,E) can
be constructed as follows. E = Egate ∪ EFF ∪ Enet .

I (i , j) ∈ Egate ∪ EFF represents a gate or FF. i is input, j is
output.

I (i , j) ∈ Enet represents interconnect between gates and FFs.
I Two dummy node: PI represents all primary inputs, PO

represents all primary outputs.

NAND

NOT

a

b

o

FF1
G1

G2

FF2

PI PO

D1 Q1 G1,i G1,o

D2Q2G2,iG2,o

(d2,p2)

(d1,p1)

(-T,0)

(-T,0)

6 / 30

Delay-Power Curve

I Each gate has several supply voltage candidates with fixed
(delay, power) pair.

I ∀(i , j) ∈ Egate , P ij(d
k
ij) = pkij for 1 6 k 6 kij , where kij is the

number of possible voltage options of each gate, P ij

represents the function that maps delay to power on (i , j).

I P ij is typically a convex function.

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
0.4

0.6

0.8

1

1.2

1.4

Delay (ns)

P
ow

er
 (μ

W
)

7 / 30

Timing Constraints and Transformation

I dij : gate delay or net delay on edge (i , j).

I ti : arrival time on node i .

I ∀(i , j) ∈ Egate ∪ Enet

ti + dij 6 tj

I sij : clock skew on flip-flop (i , j).

I smax : the maximum acceptable skew.

I ∀(i , j) ∈ EFF

tj > sij ∧ ti 6 sij + T ∧ 0 6 sij 6 smax

which is equal to

tj > ti − T ∧ tj > 0 ∧ ti 6 T + smax

8 / 30

Formulation

I The timing constraint on each edge (i , j) ∈ E can be
uniformly stated as ti + dij 6 tj , where dij is defined as

dij =

{
dij , (i , j) ∈ Egate ∪ Enet

−T , (i , j) ∈ EFF

I Discrete Voltage Assignment Problem under Clock Skew
Scheduling:

Min
∑

(i ,j)∈Egate

P ij(dij)

s.t. ti > 0, i = PI (1a)

ti 6 T , i = PO (1b)

ti 6 tj − dij , ∀(i , j) ∈ E (1c)

tj > 0, ∀(i , j) ∈ EFF (1d)

ti 6 T + smax , ∀(i , j) ∈ EFF (1e)

dij ∈ {d1
ij , · · · , d

kij
ij }, ∀(i , j) ∈ Egate (1f)

9 / 30

Hardness Review

I Well known as NP-hard.

I Though Feng et al. proposed an ε-approximation to this
problem, it turns out to be flawed.

I Discrete Voltage Assignment is a special application of
Discrete Time-Cost Tradeoff problem, which is a classic
project scheduling problem in operation science. It has been
proved to be

I Strongly NP-hard
I No ε-approximation could exist unless P = NP.
I No constant-approximation was found.

10 / 30

Hardness Review

I Well known as NP-hard.

I Though Feng et al. proposed an ε-approximation to this
problem, it turns out to be flawed.

I Discrete Voltage Assignment is a special application of
Discrete Time-Cost Tradeoff problem, which is a classic
project scheduling problem in operation science. It has been
proved to be

I Strongly NP-hard
I No ε-approximation could exist unless P = NP.
I No constant-approximation was found.

10 / 30

Outline

Problem Formulation and Hardness Review

Optimal Solution for Relaxed Problem based on Network Flow

Min-cut Prune

Experimental Results

11 / 30

Continuous Relaxation

I Linear piece-wise delay-power curve.

I A new power-delay function Pij without bounds:

Pij(dij) =



P ij(d
kij
ij), dij > d

kij
ij

P ij(d
q
ij)− bqij(dij − dq

ij), dq
ij 6 dij 6 dq+1

ij

...

P ij(d
1
ij)−M(dij − d1

ij), dij 6 d1
ij

bqij = −Pij (d
q
ij)−Pij (d

q−1
ij)

dq
ij−d

q−1
ij

is the absolute slope of power-delay

function between dq
ij and dq−1

ij . M is a sufficiently large
number which can be viewed as a penalty factor for violating
the bound constraints.

12 / 30

Convex Cost Flow Dual Problem

I Define a bound constraint function

Bi (ti) =


M × (ti − ui), ti > ui
0, 0 ≤ ti ≤ T
−M × (ti − li), ti < li

where li and ui are the lower and upper bounds of ti
I After putting arrival time constraints into objective function,

our problem becomes a convex-cost flow dual problem

Min
∑

(i ,j)∈E
Pij(dij) +

∑
i∈V

Bi (ti)

s.t. ti 6 tj − dij , ∀(i , j) ∈ E

13 / 30

Convex-cost Flow Problem

I The dual of voltage assignment problem

Min
∑

(i ,j)∈E
Cij(xij)

s.t.
∑

(i ,j)∈E
xij −

∑
(j ,i)∈E

xji = 0 ∀i ∈ V

0 6 xij 6 M ∀(i , j) ∈ E

I Cost function Cij can be obtained from Pij .
I Dual relation: dij ↔ bij (xij)

14 / 30

ε-Residual Graph

I A potential π(i) is attached to each node i .

I The excess of a node i is defined as

X (i) =
∑

(j ,i)∈E

xji −
∑

(i ,j)∈E

xij

I The residual capacity q(i , j) of each edge (i , j) ∈ E is defined
as

q(i , j) = −P−ij (bπ(j)− π(i)c)− xij

for forward edge and

q(j , i) = P+
ij (bπ(j)− π(i)c) + xij

for backward edge, where P−ij and P+
ij are the left and right

slope of power function Pij .

15 / 30

ε-Residual Graph

I The residual cost of each edge (i , j) ∈ E is defined as

cπij = C+ij (xij)− π(i) + π(j)

for forward edge and

cπji = −C−ij (xij)− π(j) + π(i)

for backward edge, where C−ij and C+ij are the left slope and
right slope of cost function Cij .

I A pseudoflow is said to be ε-optimal for ε > 0 if ∃π satisfies
that cπij > −ε ∀(i , j) ∈ E .

I An edge (i , j) is admissible if X (i) > 0 ∧ q(i , j) > 0∧
−ε 6 cπij < 0

16 / 30

Convex Cost-Scaling Algorithm

I The algorithm gradually transforms the ε-optimal solution into
ε/2-optimal solution by pushing as much as possible flow
through admissible edges, untilε < 1/ |V |.

I Initialize π ← 0 x ← 0 ε← max(i ,j)∈E

∣∣∣bkijij

∣∣∣
while ε ≥ 1/|V |

for each admissible edge (i , j) ∈ E (x)
Push q(i , j) flow through (i , j)

end for

while there is a node i with excess flow

if there is an admissible edge (i , j)
push min(X (i), q(i , j)) flow through (i , j)

else

π(i)← π(i) + ε/2
end if

end while

end while

17 / 30

Continuous Solution

I The optimal flow x∗ and node potential π∗ returned by
convex-cost scaling algorithm may be non-integer.

I Integer π can be obtained by computing the shortest distance
sp(i) from PI to other nodes in the residual graph and set
π(i) = −sp(i).

I The optimal solution can be then obtained by assigning
ti = π(i) and dij = tj − ti for each (i , j) ∈ Egate .

I Clock skew sij for FF embedded in edge (i , j) is feasible with
any value in [ti − T , tj].

18 / 30

Outline

Problem Formulation and Hardness Review

Optimal Solution for Relaxed Problem based on Network Flow

Min-cut Prune

Experimental Results

19 / 30

Continuous −→ Discrete

I Deterministic Flooring?
I Can not guarantee good performance, may waste lots of power.

I Random Rounding?
I May violate timing constraints.

We develop a mincut based heuristic to reuse the “leftover”.

20 / 30

Continuous −→ Discrete

I Deterministic Flooring?
I Can not guarantee good performance, may waste lots of power.

I Random Rounding?
I May violate timing constraints.

We develop a mincut based heuristic to reuse the “leftover”.

20 / 30

Continuous −→ Discrete

I Deterministic Flooring?
I Can not guarantee good performance, may waste lots of power.

I Random Rounding?
I May violate timing constraints.

We develop a mincut based heuristic to reuse the “leftover”.

20 / 30

Continuous −→ Discrete

I Deterministic Flooring?
I Can not guarantee good performance, may waste lots of power.

I Random Rounding?
I May violate timing constraints.

We develop a mincut based heuristic to reuse the “leftover”.

20 / 30

Continuous −→ Discrete

I Deterministic Flooring?
I Can not guarantee good performance, may waste lots of power.

I Random Rounding?
I May violate timing constraints.

We develop a mincut based heuristic to reuse the “leftover”.

20 / 30

Continuous −→ Discrete

I Deterministic Flooring?
I Can not guarantee good performance, may waste lots of power.

I Random Rounding?
I May violate timing constraints.

We develop a mincut based heuristic to reuse the “leftover”.

20 / 30

Continuous −→ Discrete

I Deterministic Flooring?
I Can not guarantee good performance, may waste lots of power.

I Random Rounding?
I May violate timing constraints.

We develop a mincut based heuristic to reuse the “leftover”.

20 / 30

Reduced Problem with Known Skew

I With optimal clock skew in continuous solution, the
sequential circuit can be reduced to combinational circuit.

I The reduced problem

Min
∑

(i ,j)∈Egate

P(dij)

s.t. ti + dij 6 tj , ∀(i , j) ∈ E
′

(2a)

dij ∈ {d1
ij , · · · , d

kij
ij }, ∀(i , j) ∈ Egate (2b)

I The new graph G
′

= (V ,E
′
) is slightly different.

I All edges (i , j) ∈ EFF are canceled and two new edges (PI , j)
and (i ,PO) are introduced with d(PI , j) = s∗ij and
d(i ,PO) = −s∗ij , where s∗ij is the optimal clock skew.

I Edge (PO,PI) with d(PO,PI) = −T is introduced to
eliminate the arrival time constraints.

21 / 30

Karush-Kuhn-Tucker condition

I The KKT condition of reduced problem

ti + dij 6 tj ∀(i , j) ∈ E
′

−P+
ij (dij) 6 xij 6 −P−ij (dij) ∀(i , j) ∈ E

′∑
(i ,j)∈E ′

xij −
∑

(j ,i)∈E ′
xji = 0 ∀i ∈ V

′

xij > 0 ∀(i , j) ∈ E
′

xij(tj − ti − dij) = 0 ∀(i , j) ∈ E
′

I Observations: If initially set all xij = 0, dij = d
kij
ij , tPI = 0 and

ti = MaxDelay(PI , i), the ONLY violated constraint is timing
constraint on edge (PO,PI)!

I Intuition: Maintain constraints while reducing delays.
I Push along longest paths (critical network) on which each

edge (i , j) s.t. tj = ti + dij !
I Monotonic Grow: Once in critical network, always in.

22 / 30

Karush-Kuhn-Tucker condition

I The KKT condition of reduced problem

ti + dij 6 tj ∀(i , j) ∈ E
′

−P+
ij (dij) 6 xij 6 −P−ij (dij) ∀(i , j) ∈ E

′∑
(i ,j)∈E ′

xij −
∑

(j ,i)∈E ′
xji = 0 ∀i ∈ V

′

xij > 0 ∀(i , j) ∈ E
′

xij(tj − ti − dij) = 0 ∀(i , j) ∈ E
′

I Observations: If initially set all xij = 0, dij = d
kij
ij , tPI = 0 and

ti = MaxDelay(PI , i), the ONLY violated constraint is timing
constraint on edge (PO,PI)!

I Intuition: Maintain constraints while reducing delays.
I Push along longest paths (critical network) on which each

edge (i , j) s.t. tj = ti + dij !
I Monotonic Grow: Once in critical network, always in.

22 / 30

Mincut-based Optimal Algorithm for Combinational
Circuits

Initialize dij ← d
kij
ij xij ← 0 ∀(i , j) ∈ E

′

Initialize cij ← −P−ij (dij) cji = 0 ∀(i , j) ∈ E
′

while MaxDelay(PI ,PO) > T
Identify critical network G 0

Solve maximum flow in the residual graph of G 0

Select a mincut M and maximum possible δd
for each (i , j) ∈ M

if (i , j) is a forward edge

dij = dij − δd
else dij = dij + δd
end if

end for

cij ← −P−ij (dij)− xij ∀(i , j) ∈ G 0

cji ← P+
ij (dij) + xij ∀(i , j) ∈ G 0

end while
23 / 30

Mincut-based Heuristic

Initialize qij ← mij xij ← 0 ∀(i , j) ∈ E
′

Initialize cij ← −P−ij (d
qij
ij) ∀(i , j) ∈ E

′

while MaxDelay(PI ,PO) > T
Identify approximate critical network G 0

Solve maximum flow in the residual graph of G 0

Select a mincut M
qij ← qij − 1 ∀forward edge (i , j) ∈ M

cij ← −P−ij (d
qij
ij)− xij ∀(i , j) ∈ E

′

end while

I Main changes from continuous version
I Switch from discrete level to level.
I Initial delay is the floor of continuous solution instead of max.
I Ignore backward edges.
I Expand the range of critical network.

24 / 30

Outline

Problem Formulation and Hardness Review

Optimal Solution for Relaxed Problem based on Network Flow

Min-cut Prune

Experimental Results

25 / 30

Experiment Setup

I Linux workstation with 3.0GHz CPU and 2.0GB memory.

I Implemented in C++.

I Tested on ISCAS89 benchmarks.

I The delay-power curve of each cell is simulated by
HSPICE U-2003.03-SP1 with supply voltage set as 0.8V,
1.0V, 1.2V and 1.4V respectively.

I Clock period T is set to 1.1X the minimum period and
maximum allowed clock skew smax is set to T

I Results compared with Ma et al. ICCAD’09 Network flow
based approach.

26 / 30

Power Ratio with Maximum Allowed Skew

I As the maximum allowed clock skew increases, more power
can be saved through clock skew scheduling.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 0.05 0.1 0.15 0.2 0.3 T

Maximum Acceptable Skew (ns)

P
S
e
q
V
A
/
P
C
o
m
b
V
A

s444

s1423

27 / 30

Power under Different Timing Constraints

I The impact of clock skew scheduling is more significant under
tight timing constraints. The power consumption of SeqVA is
very close to the lower limit even when the timing constraints
are very tight.

s444

0

20

40

60

80

100

120

140

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

T/Tmin

P
o
w
e
r
(
u
W
)

CombVA

SeqVA

28 / 30

I 9.2% additional power saving on average.

I Less running time.

I Achieve power consumption only 1.77% larger than theoretical
lower bound.

29 / 30

Thank you!

30 / 30

	Problem Formulation and Hardness Review
	Optimal Solution for Relaxed Problem based on Network Flow
	Min-cut Prune
	Experimental Results

