ASP-DAC 2011 DESIGNERS' FORUM

YOKOHAMA

HUMAN++: WIRELESS AUTONOMOUS SENSOR TECHNOLOGY FOR BODY AREA NETWORKS

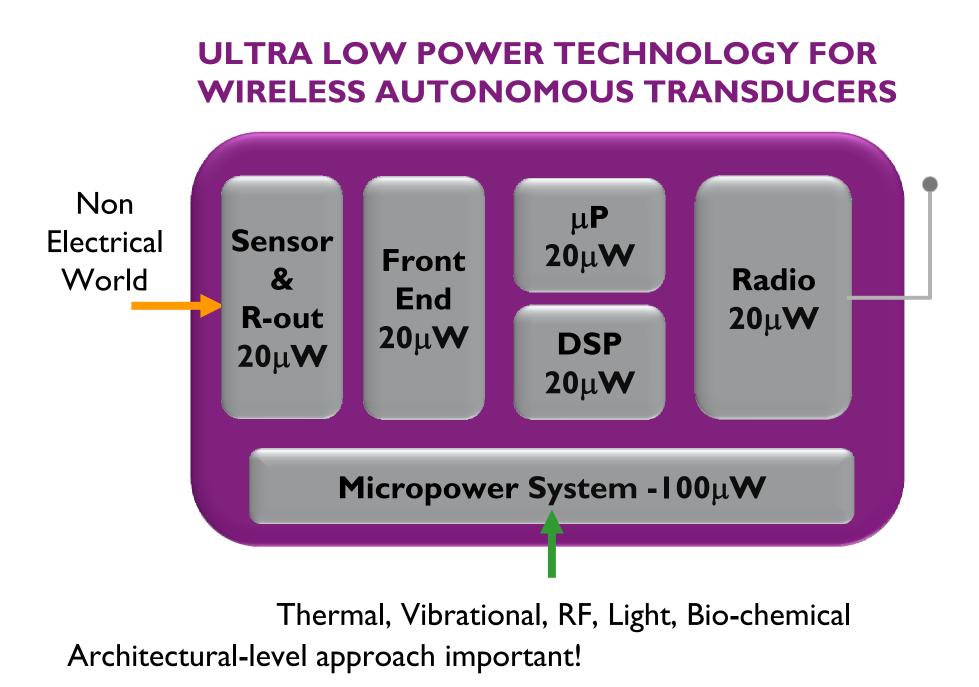
VALER POP

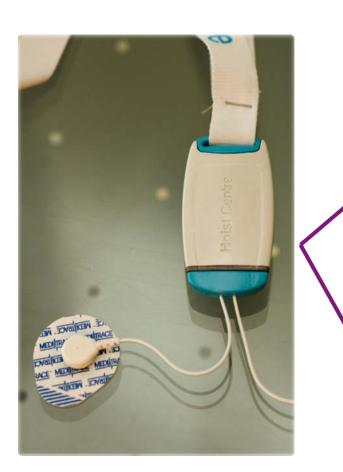
IMEC/HOLST CENTRE

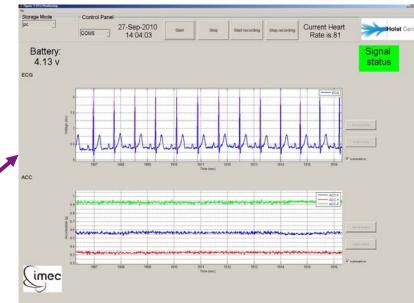
WITH SUPPORT FROM RUBEN DE FRANCISCO, HANS PFLUG, JUAN SANTANA, HUIB VISSER, RUUD VULLERS, HARMKE DE GROOT, BERT GYSELINCKX

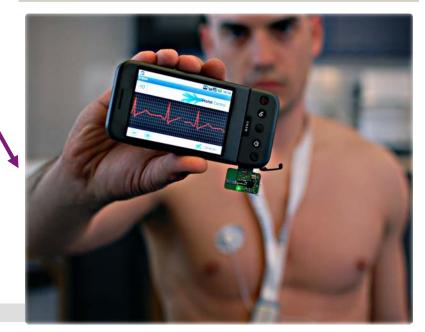
HUMAN++ VISION

BODY AREA NETWORKS(BAN) AT IMEC Enabling wearable and personal health

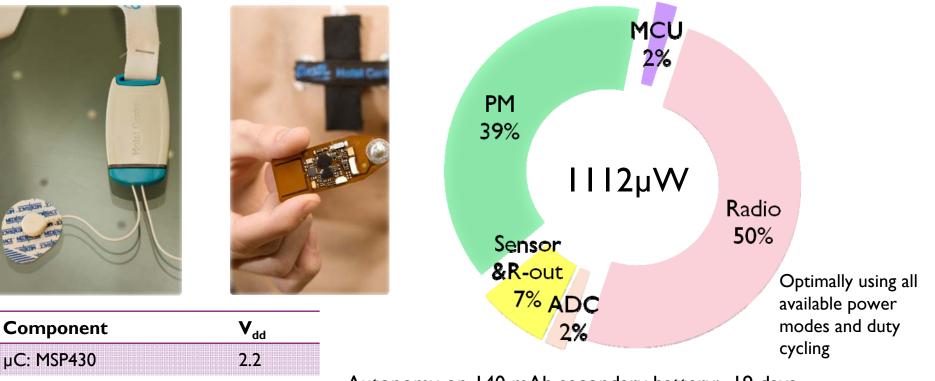

SUPPORTED BY A PROFESSIONAL ORGANIZATION AND INFRASTRUCTURE






© IMEC 2010 VALER POP

THE IMEC ROUTE TO A THIN FLEXIBLE PATCH STARTS WITH A NECKLACE


Necklace with arrhythmia analysis and continuous wireless ECG signal transmission

© IMEC 2010 VALER POP

GOING TO A PATCH IS NOT JUST CHANGING THE FORM FACTOR : POWER IS THE MAIN ISSUE

Autonomy on 140 mAh secondary battery: 19 days

Assume 6 cm² printed thin film primary battery (e.g Blue Spark ST: 1 mAh/cm² @ 1.5V):

Autonomy on printed battery: 8 hours

Should be improved by 22x, i.e. $50\mu W$

imec

Arrhythmia

Radio: Nordic nRF24L01

Power Manager: TP780

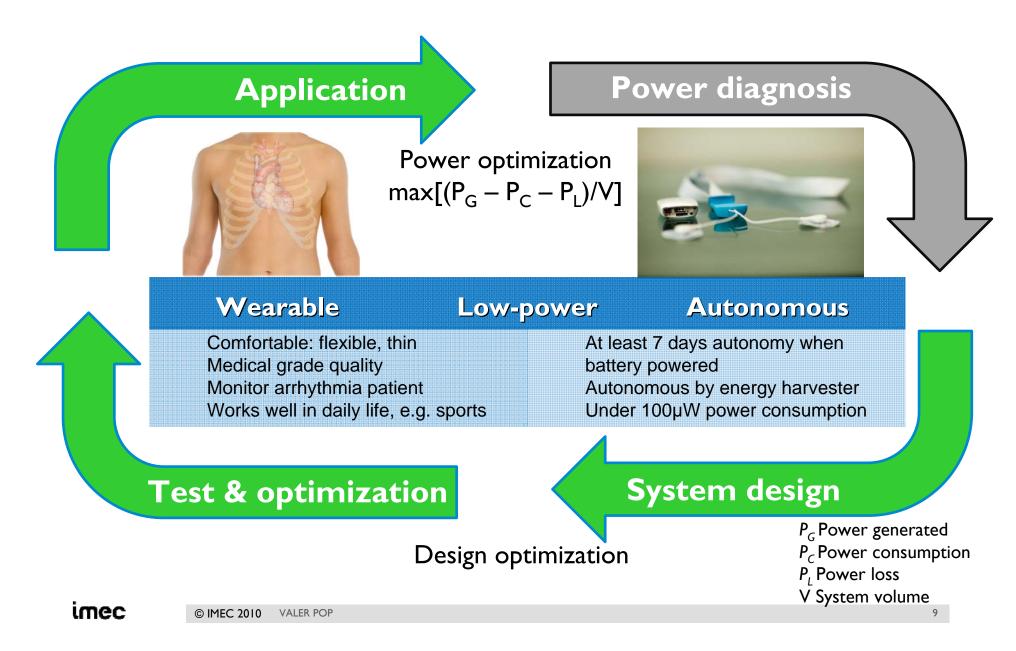
Battery: 140 mAh Li-Ion

Bio-potential: imec

ADC: MSP430

© IMEC 2010 VALER POP

2.2


2.2

3.0

3.7

remote

BAN SYSTEM ARCHITECTURE; POWER DIAGNOSIS BY MODELING

POWER DIAGNOSIS BY MODELING; ANALOG-TO-DIGITAL CONVERTER & RADIO

I. Analog-to-Digital converter power modeling

$$P_{ADC} = V_{dd}^2 L_g f_s 10^{k_1 ENOB - k_2}$$

- 2. Radio modeling
- free-space path loss model \rightarrow link budget computation

$$L_{path}(d, f_c) = 20\log_{10}(d) + 20\log_{10}(f_c) - 147.5$$

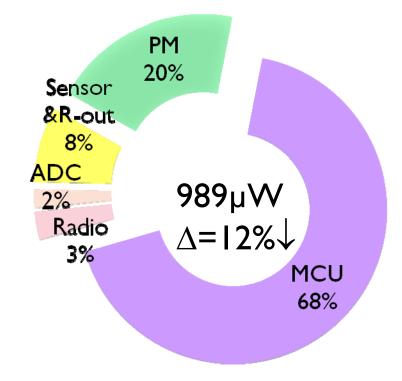
select the minimum transmit power available

$$P_{tx} \ge L_{path}(d_{\min}, f_c) + P_{sens}$$

Analog-to-Digital Converter

 V_{dd} the supply voltage L_g the CMOS technology gate length f_s ADC sampling frequency k_1 , k_2 parameters related with the ADC speed ENOB the effective number of bits

Radio


 L_{path} path length d the distance transmitter-receiver f_c the carrier frequency P_{sens} sensitivity level

IMEC © IMEC 2010 VALER POP

POWER DIAGNOSIS BY MODELING; POWER OPTIMIZATION STRATEGY

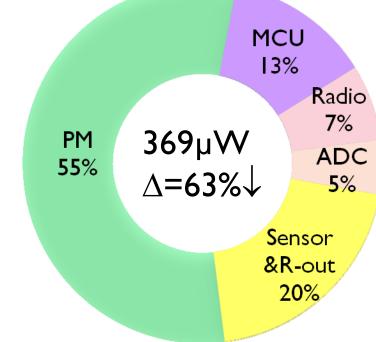
Reduce radio power; choices

More power efficient radio
Local processing of arrhythmia algorithms This reduces number of samples to be transmitted

Component		V _{dd}
μC: MSP430		2.2
Radio: Nordic n	RF24L01	2.2
ADC: MSP430		2.2
Power Manager	: TP780	
Bio-potential: ii	mec	3.0
Battery: 140 mA	Ah Li-Ion	3.7
Arrhythmia		local
imec	© IMEC 2010	VALER POP

Processor power dominated

POWER DIAGNOSIS BY MODELING; POWER OPTIMIZATION STRATEGY


Cortex-N

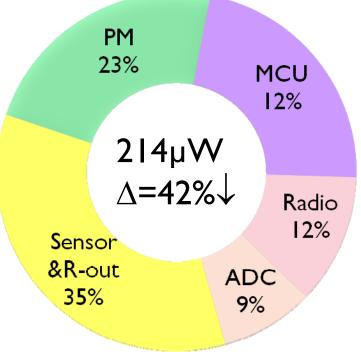
Reduce processor power

Use Cortex M3 based processor with embedded frequency and power management (130nm instead of 180nm)

Optimize implementation of algorithm for the processor: biggest gain...

Component		\mathbf{V}_{dd}
μC: EFM32G8	90	2.2
Radio: Nordic n	RF24L01	2.2
ADC: MSP430		2.2
Power Manager:	TP780	
Bio-potential: ir	nec	3.0
Battery: 140 mA	h Li-Ion	3.7
Arrhythmia		local
imee		

Power management power dominated

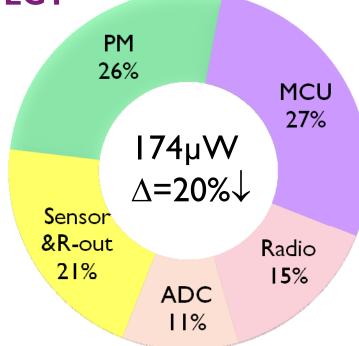

© IMEC 2010 VALER POP

POWER DIAGNOSIS BY MODELING; POWER OPTIMIZATION STRATEGY

Reduce power management power

Originally, a linear regulator used: dissipates power caused by difference Battery voltage – Operating voltage Replaced by switching regulator of Linear Technologies

Component		\mathbf{V}_{dd}
µC: EFM32G890		2.2
Radio: Nordic nR	F24L01	2.2
ADC: MSP430		2.2
Power Manager:	LTC3100	+C
Bio-potential: im	ec	3.0
Battery: 140 mAh	ı Li-Ion	3.7
Arrhythmia		local
imec	© IMEC 2010	VALER POP


Biopotential power dominated

POWER DIAGNOSIS BY MODELING; DESIGN OPTIMIZATION STRATEGY

Reduce bio-potential power

Reduce power supply voltage of biopotential chip to same voltage as digital Reduces also power management losses

Challenge to obtain same noise level!

Component		\mathbf{V}_{dd}
µC: EFM32G89	0	2.2
Radio: Nordic 1	nRF24L01	2.2
ADC: MSP430		2.2
Power Manager	-: LTC3100)+C
Bio-potential: i	mec	2.2
Battery: 140 m	Ah Li-Ion	3.7
Arrhythmia		local
imec	© IMEC 2010	VALER POP

Autonomy off necklace: 2.5 months

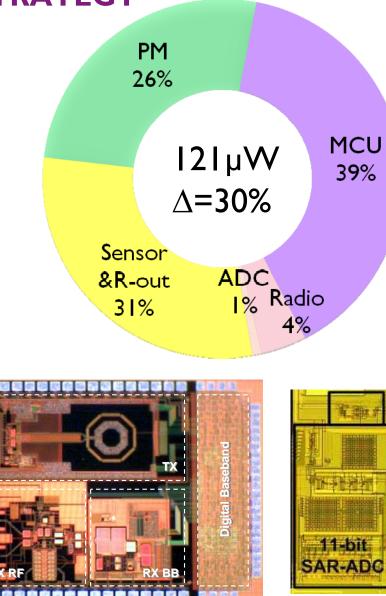
Autonomy on printed battery of 6cm²: 1.5 days

FYI: replacing the Nordic radio by Bluetooth Low Energy would increase the power to 232μ W (Δ =33% \uparrow)

Power consumption pretty balanced

POWER DIAGNOSIS BY MODELING; DESIGN OPTIMIZATION STRATEGY

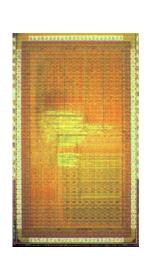
Low-power design

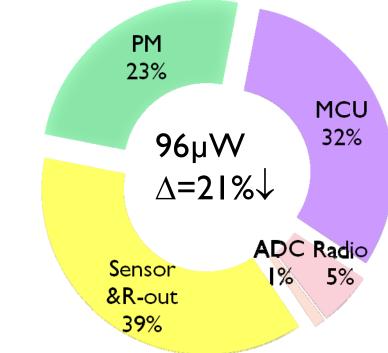

Replace the Nordic radio by own design

Replace the MSP ADC by own design

Component		\mathbf{V}_{dd}
μC: EFM32G89	0	2.2
Radio: imec		1.2
ADC: imec		2.0
Power Manager	r: LTC3100)+C
Bio-potential: i	mec	2.2
Battery: 140 m	Ah Li-Ion	3.7
Arrhythmia		local
imec	© IMEC 2010	VALER POP

POWER DIAGNOSIS BY MODELING; DESIGN OPTIMIZATION STRATEGY


Low-power design


Replace the processor by own design

Replace battery by Panasonic battery

Component		\mathbf{V}_{dd}	
μC: <mark>imec</mark>		1.2	
Radio: imec		1.2	
ADC: imec		2.2	
Power Manager	-: LTC3100)+C	
Bio-potential: i	mec	2.2	
Battery: 140 n	n <mark>Ah Li-Io</mark> r	n 2.4	
Arrhythmia		loca	1
imec	© IMEC 2010	VALER POP	

Autonomy off necklace: 3.5 months

Autonomy on printed battery of 6cm²: 2.2 days

Power diagnosis by modeling based on measured component power of real Si

WHAT IS STILL POSSIBLE TO REACH 50µW?

I. Reduce processor $\rm V_{dd}$ to 0.7V

• Works! Paper in press. at ISSCC2011

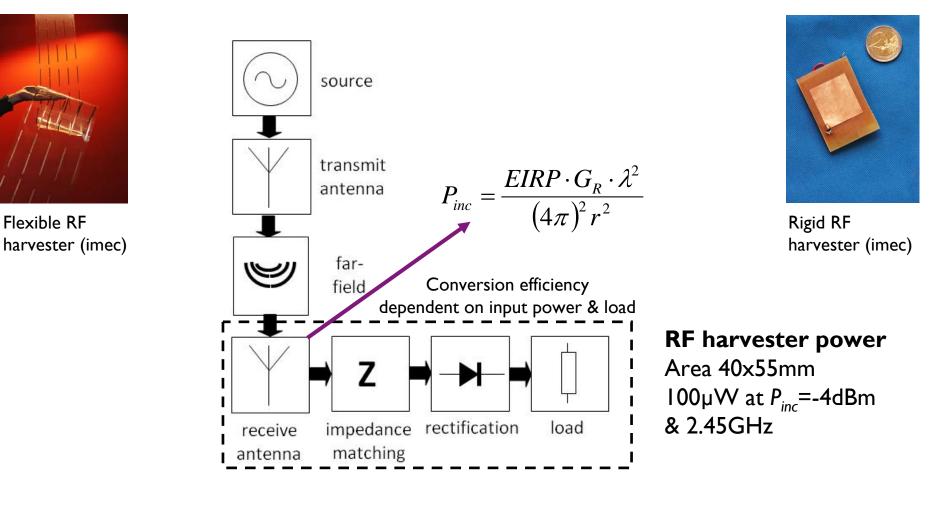
2. Reduce supply voltage instrumentation amplifiers to 1.2V

• Works! Paper in prep. for VLSI 2011

- 3. Reduce battery voltage to 1.5V
 - Possible since all circuits operate on 1.2V

Bottom line

- Estimated power consumption: 51 μ W
- Autonomy on 6 cm² thin film printed battery: 6 days


Could we replace the primary battery with energy harvesting?

- Radio-Frequency (RF)
- Thermo-electric generator
 - Works! Paper in prep. for VLSI 2011

IMCC © IMEC 2010 VALER POP

COULD WE REPLACE THE PRIMARY BATTERY WITH RADIO-FREQUENCY HARVESTER?

 P_{inc} power incident upon the rectifying circuit G_R the receive antenna gain r distance transmit - receive antenna EIRP Effective Isotropic Radiated Power λ the used wavelength

imec

CONCLUSION

It is time to make electronics autonomous

- Needs autonomous interfacing to the world
- Needs architectural power diagnosis and power optimization
- Electronics will evolve from toys-for-boys to hidden electronics that helps solving the grand challenges our society faces
- Bringing sensors to the right power point requires full system view, multi-disciplinary effort

